ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnass GIF version

Theorem mulgnnass 12873
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnnass ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnnass
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5869 . . . . . . . 8 (𝑛 = 1 → (𝑛 · 𝑁) = (1 · 𝑁))
21oveq1d 5877 . . . . . . 7 (𝑛 = 1 → ((𝑛 · 𝑁) · 𝑋) = ((1 · 𝑁) · 𝑋))
3 oveq1 5869 . . . . . . 7 (𝑛 = 1 → (𝑛 · (𝑁 · 𝑋)) = (1 · (𝑁 · 𝑋)))
42, 3eqeq12d 2188 . . . . . 6 (𝑛 = 1 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋))))
54imbi2d 231 . . . . 5 (𝑛 = 1 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))))
6 oveq1 5869 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 · 𝑁) = (𝑚 · 𝑁))
76oveq1d 5877 . . . . . . 7 (𝑛 = 𝑚 → ((𝑛 · 𝑁) · 𝑋) = ((𝑚 · 𝑁) · 𝑋))
8 oveq1 5869 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · (𝑁 · 𝑋)) = (𝑚 · (𝑁 · 𝑋)))
97, 8eqeq12d 2188 . . . . . 6 (𝑛 = 𝑚 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))))
109imbi2d 231 . . . . 5 (𝑛 = 𝑚 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)))))
11 oveq1 5869 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑁) = ((𝑚 + 1) · 𝑁))
1211oveq1d 5877 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((𝑛 · 𝑁) · 𝑋) = (((𝑚 + 1) · 𝑁) · 𝑋))
13 oveq1 5869 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 · (𝑁 · 𝑋)) = ((𝑚 + 1) · (𝑁 · 𝑋)))
1412, 13eqeq12d 2188 . . . . . 6 (𝑛 = (𝑚 + 1) → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
1514imbi2d 231 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
16 oveq1 5869 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 · 𝑁) = (𝑀 · 𝑁))
1716oveq1d 5877 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 · 𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
18 oveq1 5869 . . . . . . 7 (𝑛 = 𝑀 → (𝑛 · (𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
1917, 18eqeq12d 2188 . . . . . 6 (𝑛 = 𝑀 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
2019imbi2d 231 . . . . 5 (𝑛 = 𝑀 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))))
21 nncn 8895 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221mulid2d 7947 . . . . . . . 8 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
23223ad2ant1 1016 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · 𝑁) = 𝑁)
2423oveq1d 5877 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (𝑁 · 𝑋))
25 sgrpmgm 12675 . . . . . . . . 9 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
26 mulgass.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
27 mulgass.t . . . . . . . . . 10 · = (.g𝐺)
2826, 27mulgnncl 12854 . . . . . . . . 9 ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2925, 28syl3an1 1269 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
30293coml 1208 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (𝑁 · 𝑋) ∈ 𝐵)
3126, 27mulg1 12846 . . . . . . 7 ((𝑁 · 𝑋) ∈ 𝐵 → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3230, 31syl 14 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3324, 32eqtr4d 2209 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))
34 oveq1 5869 . . . . . . . 8 (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
35 nncn 8895 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3635adantr 276 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑚 ∈ ℂ)
37 simpr1 1001 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℕ)
3837nncnd 8901 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℂ)
3936, 38adddirp1d 7955 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · 𝑁) = ((𝑚 · 𝑁) + 𝑁))
4039oveq1d 5877 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) + 𝑁) · 𝑋))
41 simpr3 1003 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝐺 ∈ Smgrp)
42 nnmulcl 8908 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑚 · 𝑁) ∈ ℕ)
43423ad2antr1 1160 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (𝑚 · 𝑁) ∈ ℕ)
44 simpr2 1002 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑋𝐵)
45 eqid 2173 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
4626, 27, 45mulgnndir 12867 . . . . . . . . . . 11 ((𝐺 ∈ Smgrp ∧ ((𝑚 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4741, 43, 37, 44, 46syl13anc 1238 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4840, 47eqtrd 2206 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4926, 27, 45mulgnnp1 12847 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5030, 49sylan2 286 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5148, 50eqeq12d 2188 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)) ↔ (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋))))
5234, 51syl5ibr 157 . . . . . . 7 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
5352ex 115 . . . . . 6 (𝑚 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
5453a2d 26 . . . . 5 (𝑚 ∈ ℕ → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))) → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
555, 10, 15, 20, 33, 54nnind 8903 . . . 4 (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
56553expd 1222 . . 3 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → (𝐺 ∈ Smgrp → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
5756com4r 86 . 2 (𝐺 ∈ Smgrp → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
58573imp2 1220 1 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 976   = wceq 1351  wcel 2144  cfv 5205  (class class class)co 5862  cc 7781  1c1 7784   + caddc 7786   · cmul 7788  cn 8887  Basecbs 12425  +gcplusg 12489  Mgmcmgm 12635  Smgrpcsgrp 12669  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-addcom 7883  ax-mulcom 7884  ax-addass 7885  ax-mulass 7886  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-1rid 7890  ax-0id 7891  ax-rnegex 7892  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-fz 9975  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-minusg 12739  df-mulg 12840
This theorem is referenced by:  mulgnn0ass  12874
  Copyright terms: Public domain W3C validator