| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oen2g | GIF version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6834 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| f1oen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of 5516 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fex2 5438 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) | |
| 3 | 1, 2 | syl3an1 1282 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| 4 | 3 | 3coml 1212 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ V) |
| 5 | simp3 1001 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 6 | f1oen3g 6831 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 7 | 4, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 ⟶wf 5264 –1-1-onto→wf1o 5267 ≈ cen 6815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-en 6818 |
| This theorem is referenced by: f1oeng 6834 enrefg 6841 en2d 6845 en3d 6846 ener 6856 f1imaen2g 6870 cnven 6885 xpcomen 6904 exmidpw2en 6991 xpfi 7011 iccen 10110 nnenom 10560 eqgen 13481 |
| Copyright terms: Public domain | W3C validator |