ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndir GIF version

Theorem nndir 6454
Description: Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.)
Assertion
Ref Expression
nndir ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶)))

Proof of Theorem nndir
StepHypRef Expression
1 nndi 6450 . . 3 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐶 ·o 𝐴) +o (𝐶 ·o 𝐵)))
213coml 1200 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐶 ·o 𝐴) +o (𝐶 ·o 𝐵)))
3 nnacl 6444 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
4 nnmcom 6453 . . . . 5 ((𝐶 ∈ ω ∧ (𝐴 +o 𝐵) ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
53, 4sylan2 284 . . . 4 ((𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
65ancoms 266 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
763impa 1184 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
8 nnmcom 6453 . . . . 5 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·o 𝐴) = (𝐴 ·o 𝐶))
98ancoms 266 . . . 4 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐴) = (𝐴 ·o 𝐶))
1093adant2 1006 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐴) = (𝐴 ·o 𝐶))
11 nnmcom 6453 . . . . 5 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o 𝐵) = (𝐵 ·o 𝐶))
1211ancoms 266 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐵) = (𝐵 ·o 𝐶))
13123adant1 1005 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐵) = (𝐵 ·o 𝐶))
1410, 13oveq12d 5859 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) +o (𝐶 ·o 𝐵)) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶)))
152, 7, 143eqtr3d 2206 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  ωcom 4566  (class class class)co 5841   +o coa 6377   ·o comu 6378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-iord 4343  df-on 4345  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-oadd 6384  df-omul 6385
This theorem is referenced by:  addassnq0  7399
  Copyright terms: Public domain W3C validator