ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndir GIF version

Theorem nndir 6636
Description: Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.)
Assertion
Ref Expression
nndir ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶)))

Proof of Theorem nndir
StepHypRef Expression
1 nndi 6632 . . 3 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐶 ·o 𝐴) +o (𝐶 ·o 𝐵)))
213coml 1234 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐶 ·o 𝐴) +o (𝐶 ·o 𝐵)))
3 nnacl 6626 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
4 nnmcom 6635 . . . . 5 ((𝐶 ∈ ω ∧ (𝐴 +o 𝐵) ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
53, 4sylan2 286 . . . 4 ((𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
65ancoms 268 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
763impa 1218 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o (𝐴 +o 𝐵)) = ((𝐴 +o 𝐵) ·o 𝐶))
8 nnmcom 6635 . . . . 5 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·o 𝐴) = (𝐴 ·o 𝐶))
98ancoms 268 . . . 4 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐴) = (𝐴 ·o 𝐶))
1093adant2 1040 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐴) = (𝐴 ·o 𝐶))
11 nnmcom 6635 . . . . 5 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o 𝐵) = (𝐵 ·o 𝐶))
1211ancoms 268 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐵) = (𝐵 ·o 𝐶))
13123adant1 1039 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝐵) = (𝐵 ·o 𝐶))
1410, 13oveq12d 6019 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) +o (𝐶 ·o 𝐵)) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶)))
152, 7, 143eqtr3d 2270 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) +o (𝐵 ·o 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  ωcom 4682  (class class class)co 6001   +o coa 6559   ·o comu 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567
This theorem is referenced by:  addassnq0  7649
  Copyright terms: Public domain W3C validator