ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 GIF version

Theorem resqrexlemfp1 11506
Description: Lemma for resqrex 11523. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemfp1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemfp1
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9747 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 120 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantl 277 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
4 elnnuz 9747 . . . . . 6 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
5 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
75, 6resqrexlem1arp 11502 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
84, 7sylan2br 288 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
98adantlr 477 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ 𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
105, 6resqrexlemp1rp 11503 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
1110adantlr 477 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
123, 9, 11seq3p1 10674 . . 3 ((𝜑𝑁 ∈ ℕ) → (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
13 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
1413fveq1i 5624 . . 3 (𝐹‘(𝑁 + 1)) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1))
1513fveq1i 5624 . . . 4 (𝐹𝑁) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)
1615oveq1i 6004 . . 3 ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))
1712, 14, 163eqtr4g 2287 . 2 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
18 id 19 . . . . . . 7 (𝑦 = 𝑐𝑦 = 𝑐)
19 oveq2 6002 . . . . . . 7 (𝑦 = 𝑐 → (𝐴 / 𝑦) = (𝐴 / 𝑐))
2018, 19oveq12d 6012 . . . . . 6 (𝑦 = 𝑐 → (𝑦 + (𝐴 / 𝑦)) = (𝑐 + (𝐴 / 𝑐)))
2120oveq1d 6009 . . . . 5 (𝑦 = 𝑐 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
22 eqidd 2230 . . . . 5 (𝑧 = 𝑑 → ((𝑐 + (𝐴 / 𝑐)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
2321, 22cbvmpov 6075 . . . 4 (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2))
2423a1i 9 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2)))
25 id 19 . . . . . 6 (𝑐 = (𝐹𝑁) → 𝑐 = (𝐹𝑁))
26 oveq2 6002 . . . . . 6 (𝑐 = (𝐹𝑁) → (𝐴 / 𝑐) = (𝐴 / (𝐹𝑁)))
2725, 26oveq12d 6012 . . . . 5 (𝑐 = (𝐹𝑁) → (𝑐 + (𝐴 / 𝑐)) = ((𝐹𝑁) + (𝐴 / (𝐹𝑁))))
2827oveq1d 6009 . . . 4 (𝑐 = (𝐹𝑁) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
2928ad2antrl 490 . . 3 (((𝜑𝑁 ∈ ℕ) ∧ (𝑐 = (𝐹𝑁) ∧ 𝑑 = ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
3013, 5, 6resqrexlemf 11504 . . . 4 (𝜑𝐹:ℕ⟶ℝ+)
3130ffvelcdmda 5763 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
32 peano2nn 9110 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
335, 6resqrexlem1arp 11502 . . . 4 ((𝜑 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3432, 33sylan2 286 . . 3 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3531rpred 9880 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
365adantr 276 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3736, 31rerpdivcld 9912 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
3835, 37readdcld 8164 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
3938rehalfcld 9346 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2) ∈ ℝ)
4024, 29, 31, 34, 39ovmpod 6123 . 2 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
4117, 40eqtrd 2262 1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {csn 3666   class class class wbr 4082   × cxp 4714  cfv 5314  (class class class)co 5994  cmpo 5996  cr 7986  0cc0 7987  1c1 7988   + caddc 7990  cle 8170   / cdiv 8807  cn 9098  2c2 9149  cuz 9710  +crp 9837  seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-rp 9838  df-seqfrec 10657
This theorem is referenced by:  resqrexlemover  11507  resqrexlemdec  11508  resqrexlemlo  11510  resqrexlemcalc1  11511
  Copyright terms: Public domain W3C validator