Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 GIF version

Theorem resqrexlemfp1 10833
 Description: Lemma for resqrex 10850. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemfp1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemfp1
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9406 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 119 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantl 275 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
4 elnnuz 9406 . . . . . 6 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
5 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
75, 6resqrexlem1arp 10829 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
84, 7sylan2br 286 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
98adantlr 469 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ 𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
105, 6resqrexlemp1rp 10830 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
1110adantlr 469 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
123, 9, 11seq3p1 10286 . . 3 ((𝜑𝑁 ∈ ℕ) → (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
13 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
1413fveq1i 5431 . . 3 (𝐹‘(𝑁 + 1)) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1))
1513fveq1i 5431 . . . 4 (𝐹𝑁) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)
1615oveq1i 5793 . . 3 ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))
1712, 14, 163eqtr4g 2198 . 2 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
18 id 19 . . . . . . 7 (𝑦 = 𝑐𝑦 = 𝑐)
19 oveq2 5791 . . . . . . 7 (𝑦 = 𝑐 → (𝐴 / 𝑦) = (𝐴 / 𝑐))
2018, 19oveq12d 5801 . . . . . 6 (𝑦 = 𝑐 → (𝑦 + (𝐴 / 𝑦)) = (𝑐 + (𝐴 / 𝑐)))
2120oveq1d 5798 . . . . 5 (𝑦 = 𝑐 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
22 eqidd 2141 . . . . 5 (𝑧 = 𝑑 → ((𝑐 + (𝐴 / 𝑐)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
2321, 22cbvmpov 5860 . . . 4 (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2))
2423a1i 9 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2)))
25 id 19 . . . . . 6 (𝑐 = (𝐹𝑁) → 𝑐 = (𝐹𝑁))
26 oveq2 5791 . . . . . 6 (𝑐 = (𝐹𝑁) → (𝐴 / 𝑐) = (𝐴 / (𝐹𝑁)))
2725, 26oveq12d 5801 . . . . 5 (𝑐 = (𝐹𝑁) → (𝑐 + (𝐴 / 𝑐)) = ((𝐹𝑁) + (𝐴 / (𝐹𝑁))))
2827oveq1d 5798 . . . 4 (𝑐 = (𝐹𝑁) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
2928ad2antrl 482 . . 3 (((𝜑𝑁 ∈ ℕ) ∧ (𝑐 = (𝐹𝑁) ∧ 𝑑 = ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
3013, 5, 6resqrexlemf 10831 . . . 4 (𝜑𝐹:ℕ⟶ℝ+)
3130ffvelrnda 5564 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
32 peano2nn 8776 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
335, 6resqrexlem1arp 10829 . . . 4 ((𝜑 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3432, 33sylan2 284 . . 3 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3531rpred 9533 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
365adantr 274 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3736, 31rerpdivcld 9565 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
3835, 37readdcld 7839 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
3938rehalfcld 9010 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2) ∈ ℝ)
4024, 29, 31, 34, 39ovmpod 5907 . 2 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
4117, 40eqtrd 2173 1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481  {csn 3533   class class class wbr 3938   × cxp 4546  ‘cfv 5132  (class class class)co 5783   ∈ cmpo 5785  ℝcr 7663  0cc0 7664  1c1 7665   + caddc 7667   ≤ cle 7845   / cdiv 8476  ℕcn 8764  2c2 8815  ℤ≥cuz 9370  ℝ+crp 9490  seqcseq 10269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-recs 6211  df-frec 6297  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-n0 9022  df-z 9099  df-uz 9371  df-rp 9491  df-seqfrec 10270 This theorem is referenced by:  resqrexlemover  10834  resqrexlemdec  10835  resqrexlemlo  10837  resqrexlemcalc1  10838
 Copyright terms: Public domain W3C validator