ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 GIF version

Theorem resqrexlemfp1 10951
Description: Lemma for resqrex 10968. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemfp1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemfp1
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9502 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 119 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantl 275 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
4 elnnuz 9502 . . . . . 6 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
5 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
75, 6resqrexlem1arp 10947 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
84, 7sylan2br 286 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
98adantlr 469 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ 𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
105, 6resqrexlemp1rp 10948 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
1110adantlr 469 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
123, 9, 11seq3p1 10397 . . 3 ((𝜑𝑁 ∈ ℕ) → (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
13 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
1413fveq1i 5487 . . 3 (𝐹‘(𝑁 + 1)) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1))
1513fveq1i 5487 . . . 4 (𝐹𝑁) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)
1615oveq1i 5852 . . 3 ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))
1712, 14, 163eqtr4g 2224 . 2 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
18 id 19 . . . . . . 7 (𝑦 = 𝑐𝑦 = 𝑐)
19 oveq2 5850 . . . . . . 7 (𝑦 = 𝑐 → (𝐴 / 𝑦) = (𝐴 / 𝑐))
2018, 19oveq12d 5860 . . . . . 6 (𝑦 = 𝑐 → (𝑦 + (𝐴 / 𝑦)) = (𝑐 + (𝐴 / 𝑐)))
2120oveq1d 5857 . . . . 5 (𝑦 = 𝑐 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
22 eqidd 2166 . . . . 5 (𝑧 = 𝑑 → ((𝑐 + (𝐴 / 𝑐)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
2321, 22cbvmpov 5922 . . . 4 (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2))
2423a1i 9 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2)))
25 id 19 . . . . . 6 (𝑐 = (𝐹𝑁) → 𝑐 = (𝐹𝑁))
26 oveq2 5850 . . . . . 6 (𝑐 = (𝐹𝑁) → (𝐴 / 𝑐) = (𝐴 / (𝐹𝑁)))
2725, 26oveq12d 5860 . . . . 5 (𝑐 = (𝐹𝑁) → (𝑐 + (𝐴 / 𝑐)) = ((𝐹𝑁) + (𝐴 / (𝐹𝑁))))
2827oveq1d 5857 . . . 4 (𝑐 = (𝐹𝑁) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
2928ad2antrl 482 . . 3 (((𝜑𝑁 ∈ ℕ) ∧ (𝑐 = (𝐹𝑁) ∧ 𝑑 = ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
3013, 5, 6resqrexlemf 10949 . . . 4 (𝜑𝐹:ℕ⟶ℝ+)
3130ffvelrnda 5620 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
32 peano2nn 8869 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
335, 6resqrexlem1arp 10947 . . . 4 ((𝜑 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3432, 33sylan2 284 . . 3 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3531rpred 9632 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
365adantr 274 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3736, 31rerpdivcld 9664 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
3835, 37readdcld 7928 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
3938rehalfcld 9103 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2) ∈ ℝ)
4024, 29, 31, 34, 39ovmpod 5969 . 2 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
4117, 40eqtrd 2198 1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {csn 3576   class class class wbr 3982   × cxp 4602  cfv 5188  (class class class)co 5842  cmpo 5844  cr 7752  0cc0 7753  1c1 7754   + caddc 7756  cle 7934   / cdiv 8568  cn 8857  2c2 8908  cuz 9466  +crp 9589  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381
This theorem is referenced by:  resqrexlemover  10952  resqrexlemdec  10953  resqrexlemlo  10955  resqrexlemcalc1  10956
  Copyright terms: Public domain W3C validator