ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 GIF version

Theorem resqrexlemfp1 10781
Description: Lemma for resqrex 10798. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemfp1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemfp1
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9362 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
21biimpi 119 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
32adantl 275 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
4 elnnuz 9362 . . . . . 6 (𝑎 ∈ ℕ ↔ 𝑎 ∈ (ℤ‘1))
5 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
75, 6resqrexlem1arp 10777 . . . . . 6 ((𝜑𝑎 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
84, 7sylan2br 286 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
98adantlr 468 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ 𝑎 ∈ (ℤ‘1)) → ((ℕ × {(1 + 𝐴)})‘𝑎) ∈ ℝ+)
105, 6resqrexlemp1rp 10778 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
1110adantlr 468 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈ ℝ+)
123, 9, 11seq3p1 10235 . . 3 ((𝜑𝑁 ∈ ℕ) → (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
13 resqrexlemex.seq . . . 4 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
1413fveq1i 5422 . . 3 (𝐹‘(𝑁 + 1)) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1))
1513fveq1i 5422 . . . 4 (𝐹𝑁) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)
1615oveq1i 5784 . . 3 ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))
1712, 14, 163eqtr4g 2197 . 2 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))))
18 id 19 . . . . . . 7 (𝑦 = 𝑐𝑦 = 𝑐)
19 oveq2 5782 . . . . . . 7 (𝑦 = 𝑐 → (𝐴 / 𝑦) = (𝐴 / 𝑐))
2018, 19oveq12d 5792 . . . . . 6 (𝑦 = 𝑐 → (𝑦 + (𝐴 / 𝑦)) = (𝑐 + (𝐴 / 𝑐)))
2120oveq1d 5789 . . . . 5 (𝑦 = 𝑐 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
22 eqidd 2140 . . . . 5 (𝑧 = 𝑑 → ((𝑐 + (𝐴 / 𝑐)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2))
2321, 22cbvmpov 5851 . . . 4 (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2))
2423a1i 9 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+ ↦ ((𝑐 + (𝐴 / 𝑐)) / 2)))
25 id 19 . . . . . 6 (𝑐 = (𝐹𝑁) → 𝑐 = (𝐹𝑁))
26 oveq2 5782 . . . . . 6 (𝑐 = (𝐹𝑁) → (𝐴 / 𝑐) = (𝐴 / (𝐹𝑁)))
2725, 26oveq12d 5792 . . . . 5 (𝑐 = (𝐹𝑁) → (𝑐 + (𝐴 / 𝑐)) = ((𝐹𝑁) + (𝐴 / (𝐹𝑁))))
2827oveq1d 5789 . . . 4 (𝑐 = (𝐹𝑁) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
2928ad2antrl 481 . . 3 (((𝜑𝑁 ∈ ℕ) ∧ (𝑐 = (𝐹𝑁) ∧ 𝑑 = ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
3013, 5, 6resqrexlemf 10779 . . . 4 (𝜑𝐹:ℕ⟶ℝ+)
3130ffvelrnda 5555 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
32 peano2nn 8732 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
335, 6resqrexlem1arp 10777 . . . 4 ((𝜑 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3432, 33sylan2 284 . . 3 ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)) ∈ ℝ+)
3531rpred 9483 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
365adantr 274 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3736, 31rerpdivcld 9515 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
3835, 37readdcld 7795 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
3938rehalfcld 8966 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2) ∈ ℝ)
4024, 29, 31, 34, 39ovmpod 5898 . 2 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
4117, 40eqtrd 2172 1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {csn 3527   class class class wbr 3929   × cxp 4537  cfv 5123  (class class class)co 5774  cmpo 5776  cr 7619  0cc0 7620  1c1 7621   + caddc 7623  cle 7801   / cdiv 8432  cn 8720  2c2 8771  cuz 9326  +crp 9441  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219
This theorem is referenced by:  resqrexlemover  10782  resqrexlemdec  10783  resqrexlemlo  10785  resqrexlemcalc1  10786
  Copyright terms: Public domain W3C validator