Step | Hyp | Ref
| Expression |
1 | | elnnuz 9502 |
. . . . . 6
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
2 | 1 | biimpi 119 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
3 | 2 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
(ℤ≥‘1)) |
4 | | elnnuz 9502 |
. . . . . 6
⊢ (𝑎 ∈ ℕ ↔ 𝑎 ∈
(ℤ≥‘1)) |
5 | | resqrexlemex.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
6 | | resqrexlemex.agt0 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝐴) |
7 | 5, 6 | resqrexlem1arp 10947 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → ((ℕ × {(1
+ 𝐴)})‘𝑎) ∈
ℝ+) |
8 | 4, 7 | sylan2br 286 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘1))
→ ((ℕ × {(1 + 𝐴)})‘𝑎) ∈
ℝ+) |
9 | 8 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ 𝑎 ∈ (ℤ≥‘1))
→ ((ℕ × {(1 + 𝐴)})‘𝑎) ∈
ℝ+) |
10 | 5, 6 | resqrexlemp1rp 10948 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (𝑎(𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈
ℝ+) |
11 | 10 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (𝑎(𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈
ℝ+) |
12 | 3, 9, 11 | seq3p1 10397 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (seq1((𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) |
13 | | resqrexlemex.seq |
. . . 4
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
14 | 13 | fveq1i 5487 |
. . 3
⊢ (𝐹‘(𝑁 + 1)) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) |
15 | 13 | fveq1i 5487 |
. . . 4
⊢ (𝐹‘𝑁) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁) |
16 | 15 | oveq1i 5852 |
. . 3
⊢ ((𝐹‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) |
17 | 12, 14, 16 | 3eqtr4g 2224 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = ((𝐹‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) |
18 | | id 19 |
. . . . . . 7
⊢ (𝑦 = 𝑐 → 𝑦 = 𝑐) |
19 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑦 = 𝑐 → (𝐴 / 𝑦) = (𝐴 / 𝑐)) |
20 | 18, 19 | oveq12d 5860 |
. . . . . 6
⊢ (𝑦 = 𝑐 → (𝑦 + (𝐴 / 𝑦)) = (𝑐 + (𝐴 / 𝑐))) |
21 | 20 | oveq1d 5857 |
. . . . 5
⊢ (𝑦 = 𝑐 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2)) |
22 | | eqidd 2166 |
. . . . 5
⊢ (𝑧 = 𝑑 → ((𝑐 + (𝐴 / 𝑐)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2)) |
23 | 21, 22 | cbvmpov 5922 |
. . . 4
⊢ (𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+
↦ ((𝑐 + (𝐴 / 𝑐)) / 2)) |
24 | 23 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+
↦ ((𝑐 + (𝐴 / 𝑐)) / 2))) |
25 | | id 19 |
. . . . . 6
⊢ (𝑐 = (𝐹‘𝑁) → 𝑐 = (𝐹‘𝑁)) |
26 | | oveq2 5850 |
. . . . . 6
⊢ (𝑐 = (𝐹‘𝑁) → (𝐴 / 𝑐) = (𝐴 / (𝐹‘𝑁))) |
27 | 25, 26 | oveq12d 5860 |
. . . . 5
⊢ (𝑐 = (𝐹‘𝑁) → (𝑐 + (𝐴 / 𝑐)) = ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁)))) |
28 | 27 | oveq1d 5857 |
. . . 4
⊢ (𝑐 = (𝐹‘𝑁) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
29 | 28 | ad2antrl 482 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ (𝑐 = (𝐹‘𝑁) ∧ 𝑑 = ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
30 | 13, 5, 6 | resqrexlemf 10949 |
. . . 4
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
31 | 30 | ffvelrnda 5620 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈
ℝ+) |
32 | | peano2nn 8869 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ) |
33 | 5, 6 | resqrexlem1arp 10947 |
. . . 4
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ
× {(1 + 𝐴)})‘(𝑁 + 1)) ∈
ℝ+) |
34 | 32, 33 | sylan2 284 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ ×
{(1 + 𝐴)})‘(𝑁 + 1)) ∈
ℝ+) |
35 | 31 | rpred 9632 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ) |
36 | 5 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
37 | 36, 31 | rerpdivcld 9664 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) ∈ ℝ) |
38 | 35, 37 | readdcld 7928 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) ∈ ℝ) |
39 | 38 | rehalfcld 9103 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) ∈ ℝ) |
40 | 24, 29, 31, 34, 39 | ovmpod 5969 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
41 | 17, 40 | eqtrd 2198 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |