| Step | Hyp | Ref
| Expression |
| 1 | | elnnuz 9638 |
. . . . . 6
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
| 2 | 1 | biimpi 120 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
| 3 | 2 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
(ℤ≥‘1)) |
| 4 | | elnnuz 9638 |
. . . . . 6
⊢ (𝑎 ∈ ℕ ↔ 𝑎 ∈
(ℤ≥‘1)) |
| 5 | | resqrexlemex.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 6 | | resqrexlemex.agt0 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝐴) |
| 7 | 5, 6 | resqrexlem1arp 11170 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → ((ℕ × {(1
+ 𝐴)})‘𝑎) ∈
ℝ+) |
| 8 | 4, 7 | sylan2br 288 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘1))
→ ((ℕ × {(1 + 𝐴)})‘𝑎) ∈
ℝ+) |
| 9 | 8 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ 𝑎 ∈ (ℤ≥‘1))
→ ((ℕ × {(1 + 𝐴)})‘𝑎) ∈
ℝ+) |
| 10 | 5, 6 | resqrexlemp1rp 11171 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (𝑎(𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈
ℝ+) |
| 11 | 10 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (𝑎(𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝑏) ∈
ℝ+) |
| 12 | 3, 9, 11 | seq3p1 10557 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (seq1((𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) |
| 13 | | resqrexlemex.seq |
. . . 4
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
| 14 | 13 | fveq1i 5559 |
. . 3
⊢ (𝐹‘(𝑁 + 1)) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘(𝑁 + 1)) |
| 15 | 13 | fveq1i 5559 |
. . . 4
⊢ (𝐹‘𝑁) = (seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁) |
| 16 | 15 | oveq1i 5932 |
. . 3
⊢ ((𝐹‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = ((seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) |
| 17 | 12, 14, 16 | 3eqtr4g 2254 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = ((𝐹‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) |
| 18 | | id 19 |
. . . . . . 7
⊢ (𝑦 = 𝑐 → 𝑦 = 𝑐) |
| 19 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑦 = 𝑐 → (𝐴 / 𝑦) = (𝐴 / 𝑐)) |
| 20 | 18, 19 | oveq12d 5940 |
. . . . . 6
⊢ (𝑦 = 𝑐 → (𝑦 + (𝐴 / 𝑦)) = (𝑐 + (𝐴 / 𝑐))) |
| 21 | 20 | oveq1d 5937 |
. . . . 5
⊢ (𝑦 = 𝑐 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2)) |
| 22 | | eqidd 2197 |
. . . . 5
⊢ (𝑧 = 𝑑 → ((𝑐 + (𝐴 / 𝑐)) / 2) = ((𝑐 + (𝐴 / 𝑐)) / 2)) |
| 23 | 21, 22 | cbvmpov 6002 |
. . . 4
⊢ (𝑦 ∈ ℝ+,
𝑧 ∈
ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+
↦ ((𝑐 + (𝐴 / 𝑐)) / 2)) |
| 24 | 23 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑐 ∈ ℝ+, 𝑑 ∈ ℝ+
↦ ((𝑐 + (𝐴 / 𝑐)) / 2))) |
| 25 | | id 19 |
. . . . . 6
⊢ (𝑐 = (𝐹‘𝑁) → 𝑐 = (𝐹‘𝑁)) |
| 26 | | oveq2 5930 |
. . . . . 6
⊢ (𝑐 = (𝐹‘𝑁) → (𝐴 / 𝑐) = (𝐴 / (𝐹‘𝑁))) |
| 27 | 25, 26 | oveq12d 5940 |
. . . . 5
⊢ (𝑐 = (𝐹‘𝑁) → (𝑐 + (𝐴 / 𝑐)) = ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁)))) |
| 28 | 27 | oveq1d 5937 |
. . . 4
⊢ (𝑐 = (𝐹‘𝑁) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
| 29 | 28 | ad2antrl 490 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ (𝑐 = (𝐹‘𝑁) ∧ 𝑑 = ((ℕ × {(1 + 𝐴)})‘(𝑁 + 1)))) → ((𝑐 + (𝐴 / 𝑐)) / 2) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
| 30 | 13, 5, 6 | resqrexlemf 11172 |
. . . 4
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
| 31 | 30 | ffvelcdmda 5697 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈
ℝ+) |
| 32 | | peano2nn 9002 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ) |
| 33 | 5, 6 | resqrexlem1arp 11170 |
. . . 4
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ
× {(1 + 𝐴)})‘(𝑁 + 1)) ∈
ℝ+) |
| 34 | 32, 33 | sylan2 286 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ ×
{(1 + 𝐴)})‘(𝑁 + 1)) ∈
ℝ+) |
| 35 | 31 | rpred 9771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ) |
| 36 | 5 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 37 | 36, 31 | rerpdivcld 9803 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) ∈ ℝ) |
| 38 | 35, 37 | readdcld 8056 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) ∈ ℝ) |
| 39 | 38 | rehalfcld 9238 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) ∈ ℝ) |
| 40 | 24, 29, 31, 34, 39 | ovmpod 6050 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁)(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2))((ℕ × {(1 + 𝐴)})‘(𝑁 + 1))) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
| 41 | 17, 40 | eqtrd 2229 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |