| Step | Hyp | Ref
 | Expression | 
| 1 |   | offval2.2 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) | 
| 2 | 1 | ralrimiva 2570 | 
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) | 
| 3 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 4 | 3 | fnmpt 5384 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑊 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) | 
| 5 | 2, 4 | syl 14 | 
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) | 
| 6 |   | offval2.4 | 
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 7 | 6 | fneq1d 5348 | 
. . . 4
⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) | 
| 8 | 5, 7 | mpbird 167 | 
. . 3
⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 9 |   | offval2.3 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) | 
| 10 | 9 | ralrimiva 2570 | 
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑋) | 
| 11 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | 
| 12 | 11 | fnmpt 5384 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝑋 → (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) | 
| 13 | 10, 12 | syl 14 | 
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) | 
| 14 |   | offval2.5 | 
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) | 
| 15 | 14 | fneq1d 5348 | 
. . . 4
⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴)) | 
| 16 | 13, 15 | mpbird 167 | 
. . 3
⊢ (𝜑 → 𝐺 Fn 𝐴) | 
| 17 |   | offval2.1 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 18 |   | inidm 3372 | 
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 | 
| 19 | 6 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 20 | 19 | fveq1d 5560 | 
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | 
| 21 | 14 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) | 
| 22 | 21 | fveq1d 5560 | 
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) | 
| 23 | 8, 16, 17, 17, 18, 20, 22 | ofrfval 6144 | 
. 2
⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑦 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦))) | 
| 24 |   | nffvmpt1 5569 | 
. . . . 5
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) | 
| 25 |   | nfcv 2339 | 
. . . . 5
⊢
Ⅎ𝑥𝑅 | 
| 26 |   | nffvmpt1 5569 | 
. . . . 5
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) | 
| 27 | 24, 25, 26 | nfbr 4079 | 
. . . 4
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) | 
| 28 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑦((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) | 
| 29 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) | 
| 30 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥)) | 
| 31 | 29, 30 | breq12d 4046 | 
. . . 4
⊢ (𝑦 = 𝑥 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥))) | 
| 32 | 27, 28, 31 | cbvral 2725 | 
. . 3
⊢
(∀𝑦 ∈
𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ∀𝑥 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥)) | 
| 33 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | 
| 34 | 3 | fvmpt2 5645 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) | 
| 35 | 33, 1, 34 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) | 
| 36 | 11 | fvmpt2 5645 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑋) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) | 
| 37 | 33, 9, 36 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) | 
| 38 | 35, 37 | breq12d 4046 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) ↔ 𝐵𝑅𝐶)) | 
| 39 | 38 | ralbidva 2493 | 
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) | 
| 40 | 32, 39 | bitrid 192 | 
. 2
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) | 
| 41 | 23, 40 | bitrd 188 | 
1
⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) |