ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval2 GIF version

Theorem ofrfval2 6147
Description: The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1 (𝜑𝐴𝑉)
offval2.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
offval2.3 ((𝜑𝑥𝐴) → 𝐶𝑋)
offval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
offval2.5 (𝜑𝐺 = (𝑥𝐴𝐶))
Assertion
Ref Expression
ofrfval2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem ofrfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑊)
21ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
3 eqid 2193 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 5380 . . . . 5 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 offval2.4 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 5344 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 167 . . 3 (𝜑𝐹 Fn 𝐴)
9 offval2.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝑋)
109ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝑋)
11 eqid 2193 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1211fnmpt 5380 . . . . 5 (∀𝑥𝐴 𝐶𝑋 → (𝑥𝐴𝐶) Fn 𝐴)
1310, 12syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
14 offval2.5 . . . . 5 (𝜑𝐺 = (𝑥𝐴𝐶))
1514fneq1d 5344 . . . 4 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
1613, 15mpbird 167 . . 3 (𝜑𝐺 Fn 𝐴)
17 offval2.1 . . 3 (𝜑𝐴𝑉)
18 inidm 3368 . . 3 (𝐴𝐴) = 𝐴
196adantr 276 . . . 4 ((𝜑𝑦𝐴) → 𝐹 = (𝑥𝐴𝐵))
2019fveq1d 5556 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) = ((𝑥𝐴𝐵)‘𝑦))
2114adantr 276 . . . 4 ((𝜑𝑦𝐴) → 𝐺 = (𝑥𝐴𝐶))
2221fveq1d 5556 . . 3 ((𝜑𝑦𝐴) → (𝐺𝑦) = ((𝑥𝐴𝐶)‘𝑦))
238, 16, 17, 17, 18, 20, 22ofrfval 6139 . 2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)))
24 nffvmpt1 5565 . . . . 5 𝑥((𝑥𝐴𝐵)‘𝑦)
25 nfcv 2336 . . . . 5 𝑥𝑅
26 nffvmpt1 5565 . . . . 5 𝑥((𝑥𝐴𝐶)‘𝑦)
2724, 25, 26nfbr 4075 . . . 4 𝑥((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)
28 nfv 1539 . . . 4 𝑦((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)
29 fveq2 5554 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
30 fveq2 5554 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐶)‘𝑦) = ((𝑥𝐴𝐶)‘𝑥))
3129, 30breq12d 4042 . . . 4 (𝑦 = 𝑥 → (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)))
3227, 28, 31cbvral 2722 . . 3 (∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥))
33 simpr 110 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
343fvmpt2 5641 . . . . . 6 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3533, 1, 34syl2anc 411 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3611fvmpt2 5641 . . . . . 6 ((𝑥𝐴𝐶𝑋) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3733, 9, 36syl2anc 411 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3835, 37breq12d 4042 . . . 4 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥) ↔ 𝐵𝑅𝐶))
3938ralbidva 2490 . . 3 (𝜑 → (∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥) ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
4032, 39bitrid 192 . 2 (𝜑 → (∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
4123, 40bitrd 188 1 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4029  cmpt 4090   Fn wfn 5249  cfv 5254  𝑟 cofr 6129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ofr 6131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator