ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval2 GIF version

Theorem ofrfval2 5998
Description: The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1 (𝜑𝐴𝑉)
offval2.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
offval2.3 ((𝜑𝑥𝐴) → 𝐶𝑋)
offval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
offval2.5 (𝜑𝐺 = (𝑥𝐴𝐶))
Assertion
Ref Expression
ofrfval2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem ofrfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑊)
21ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
3 eqid 2139 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 5249 . . . . 5 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 offval2.4 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 5213 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 166 . . 3 (𝜑𝐹 Fn 𝐴)
9 offval2.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝑋)
109ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝑋)
11 eqid 2139 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1211fnmpt 5249 . . . . 5 (∀𝑥𝐴 𝐶𝑋 → (𝑥𝐴𝐶) Fn 𝐴)
1310, 12syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
14 offval2.5 . . . . 5 (𝜑𝐺 = (𝑥𝐴𝐶))
1514fneq1d 5213 . . . 4 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
1613, 15mpbird 166 . . 3 (𝜑𝐺 Fn 𝐴)
17 offval2.1 . . 3 (𝜑𝐴𝑉)
18 inidm 3285 . . 3 (𝐴𝐴) = 𝐴
196adantr 274 . . . 4 ((𝜑𝑦𝐴) → 𝐹 = (𝑥𝐴𝐵))
2019fveq1d 5423 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) = ((𝑥𝐴𝐵)‘𝑦))
2114adantr 274 . . . 4 ((𝜑𝑦𝐴) → 𝐺 = (𝑥𝐴𝐶))
2221fveq1d 5423 . . 3 ((𝜑𝑦𝐴) → (𝐺𝑦) = ((𝑥𝐴𝐶)‘𝑦))
238, 16, 17, 17, 18, 20, 22ofrfval 5990 . 2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)))
24 nffvmpt1 5432 . . . . 5 𝑥((𝑥𝐴𝐵)‘𝑦)
25 nfcv 2281 . . . . 5 𝑥𝑅
26 nffvmpt1 5432 . . . . 5 𝑥((𝑥𝐴𝐶)‘𝑦)
2724, 25, 26nfbr 3974 . . . 4 𝑥((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)
28 nfv 1508 . . . 4 𝑦((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)
29 fveq2 5421 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
30 fveq2 5421 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐶)‘𝑦) = ((𝑥𝐴𝐶)‘𝑥))
3129, 30breq12d 3942 . . . 4 (𝑦 = 𝑥 → (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)))
3227, 28, 31cbvral 2650 . . 3 (∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥))
33 simpr 109 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
343fvmpt2 5504 . . . . . 6 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3533, 1, 34syl2anc 408 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3611fvmpt2 5504 . . . . . 6 ((𝑥𝐴𝐶𝑋) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3733, 9, 36syl2anc 408 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3835, 37breq12d 3942 . . . 4 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥) ↔ 𝐵𝑅𝐶))
3938ralbidva 2433 . . 3 (𝜑 → (∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥) ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
4032, 39syl5bb 191 . 2 (𝜑 → (∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
4123, 40bitrd 187 1 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416   class class class wbr 3929  cmpt 3989   Fn wfn 5118  cfv 5123  𝑟 cofr 5981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ofr 5983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator