Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfv2f | GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5583 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
eqfnfv2f.1 | ⊢ Ⅎ𝑥𝐹 |
eqfnfv2f.2 | ⊢ Ⅎ𝑥𝐺 |
Ref | Expression |
---|---|
eqfnfv2f | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv 5583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧))) | |
2 | eqfnfv2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 5496 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | eqfnfv2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
6 | 5, 3 | nffv 5496 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑧) |
7 | 4, 6 | nfeq 2316 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) = (𝐺‘𝑧) |
8 | nfv 1516 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) = (𝐺‘𝑥) | |
9 | fveq2 5486 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
10 | fveq2 5486 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) | |
11 | 9, 10 | eqeq12d 2180 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
12 | 7, 8, 11 | cbvral 2688 | . 2 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
13 | 1, 12 | bitrdi 195 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 Ⅎwnfc 2295 ∀wral 2444 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |