| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfv2f | GIF version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5731 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqfnfv2f.1 | ⊢ Ⅎ𝑥𝐹 |
| eqfnfv2f.2 | ⊢ Ⅎ𝑥𝐺 |
| Ref | Expression |
|---|---|
| eqfnfv2f | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfv 5731 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧))) | |
| 2 | eqfnfv2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 4 | 2, 3 | nffv 5636 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 5 | eqfnfv2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
| 6 | 5, 3 | nffv 5636 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑧) |
| 7 | 4, 6 | nfeq 2380 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) = (𝐺‘𝑧) |
| 8 | nfv 1574 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) = (𝐺‘𝑥) | |
| 9 | fveq2 5626 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 10 | fveq2 5626 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) | |
| 11 | 9, 10 | eqeq12d 2244 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 12 | 7, 8, 11 | cbvral 2761 | . 2 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 13 | 1, 12 | bitrdi 196 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 Ⅎwnfc 2359 ∀wral 2508 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |