Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfv2f | GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5605 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
eqfnfv2f.1 | ⊢ Ⅎ𝑥𝐹 |
eqfnfv2f.2 | ⊢ Ⅎ𝑥𝐺 |
Ref | Expression |
---|---|
eqfnfv2f | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv 5605 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧))) | |
2 | eqfnfv2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2317 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 5517 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | eqfnfv2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
6 | 5, 3 | nffv 5517 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑧) |
7 | 4, 6 | nfeq 2325 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) = (𝐺‘𝑧) |
8 | nfv 1526 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) = (𝐺‘𝑥) | |
9 | fveq2 5507 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
10 | fveq2 5507 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) | |
11 | 9, 10 | eqeq12d 2190 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
12 | 7, 8, 11 | cbvral 2697 | . 2 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
13 | 1, 12 | bitrdi 196 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnfc 2304 ∀wral 2453 Fn wfn 5203 ‘cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |