ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2f GIF version

Theorem eqfnfv2f 5587
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5583 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1 𝑥𝐹
eqfnfv2f.2 𝑥𝐺
Assertion
Ref Expression
eqfnfv2f ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem eqfnfv2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5583 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
2 eqfnfv2f.1 . . . . 5 𝑥𝐹
3 nfcv 2308 . . . . 5 𝑥𝑧
42, 3nffv 5496 . . . 4 𝑥(𝐹𝑧)
5 eqfnfv2f.2 . . . . 5 𝑥𝐺
65, 3nffv 5496 . . . 4 𝑥(𝐺𝑧)
74, 6nfeq 2316 . . 3 𝑥(𝐹𝑧) = (𝐺𝑧)
8 nfv 1516 . . 3 𝑧(𝐹𝑥) = (𝐺𝑥)
9 fveq2 5486 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
10 fveq2 5486 . . . 4 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
119, 10eqeq12d 2180 . . 3 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
127, 8, 11cbvral 2688 . 2 (∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
131, 12bitrdi 195 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnfc 2295  wral 2444   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator