![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqfnfv2f | GIF version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5626 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
eqfnfv2f.1 | ⊢ Ⅎ𝑥𝐹 |
eqfnfv2f.2 | ⊢ Ⅎ𝑥𝐺 |
Ref | Expression |
---|---|
eqfnfv2f | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv 5626 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧))) | |
2 | eqfnfv2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2329 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 5537 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | eqfnfv2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
6 | 5, 3 | nffv 5537 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑧) |
7 | 4, 6 | nfeq 2337 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) = (𝐺‘𝑧) |
8 | nfv 1538 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) = (𝐺‘𝑥) | |
9 | fveq2 5527 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
10 | fveq2 5527 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) | |
11 | 9, 10 | eqeq12d 2202 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
12 | 7, 8, 11 | cbvral 2711 | . 2 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
13 | 1, 12 | bitrdi 196 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 Ⅎwnfc 2316 ∀wral 2465 Fn wfn 5223 ‘cfv 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |