| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcnsrec | GIF version | ||
| Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7954 and mulcnsrec 7956. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| addcnsrec | ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcnsr 7947 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | |
| 2 | opelxpi 4707 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → 〈𝐴, 𝐵〉 ∈ (R × R)) | |
| 3 | ecidg 6686 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (R × R) → [〈𝐴, 𝐵〉]◡ E = 〈𝐴, 𝐵〉) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → [〈𝐴, 𝐵〉]◡ E = 〈𝐴, 𝐵〉) |
| 5 | opelxpi 4707 | . . . 4 ⊢ ((𝐶 ∈ R ∧ 𝐷 ∈ R) → 〈𝐶, 𝐷〉 ∈ (R × R)) | |
| 6 | ecidg 6686 | . . . 4 ⊢ (〈𝐶, 𝐷〉 ∈ (R × R) → [〈𝐶, 𝐷〉]◡ E = 〈𝐶, 𝐷〉) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝐶 ∈ R ∧ 𝐷 ∈ R) → [〈𝐶, 𝐷〉]◡ E = 〈𝐶, 𝐷〉) |
| 8 | 4, 7 | oveqan12d 5963 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉)) |
| 9 | addclsr 7866 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝐶 ∈ R) → (𝐴 +R 𝐶) ∈ R) | |
| 10 | 9 | ad2ant2r 509 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (𝐴 +R 𝐶) ∈ R) |
| 11 | addclsr 7866 | . . . . 5 ⊢ ((𝐵 ∈ R ∧ 𝐷 ∈ R) → (𝐵 +R 𝐷) ∈ R) | |
| 12 | 11 | ad2ant2l 508 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (𝐵 +R 𝐷) ∈ R) |
| 13 | opelxpi 4707 | . . . 4 ⊢ (((𝐴 +R 𝐶) ∈ R ∧ (𝐵 +R 𝐷) ∈ R) → 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉 ∈ (R × R)) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉 ∈ (R × R)) |
| 15 | ecidg 6686 | . . 3 ⊢ (〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉 ∈ (R × R) → [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | |
| 16 | 14, 15 | syl 14 | . 2 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) |
| 17 | 1, 8, 16 | 3eqtr4d 2248 | 1 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 〈cop 3636 E cep 4334 × cxp 4673 ◡ccnv 4674 (class class class)co 5944 [cec 6618 Rcnr 7410 +R cplr 7414 + caddc 7928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-iplp 7581 df-enr 7839 df-nr 7840 df-plr 7841 df-c 7931 df-add 7936 |
| This theorem is referenced by: axaddass 7985 axdistr 7987 |
| Copyright terms: Public domain | W3C validator |