ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfima3 GIF version

Theorem dfima3 4949
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima3 (𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem dfima3
StepHypRef Expression
1 dfima2 4948 . 2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
2 df-br 3983 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32rexbii 2473 . . . 4 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥𝐵𝑥, 𝑦⟩ ∈ 𝐴)
4 df-rex 2450 . . . 4 (∃𝑥𝐵𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
53, 4bitri 183 . . 3 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
65abbii 2282 . 2 {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
71, 6eqtri 2186 1 (𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wrex 2445  cop 3579   class class class wbr 3982  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  imadmrn  4956  imassrn  4957  imai  4960
  Copyright terms: Public domain W3C validator