| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecelqsi | GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsi.1 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
| 2 | ecelqsg 6743 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 [cec 6686 / cqs 6687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-ec 6690 df-qs 6694 |
| This theorem is referenced by: ecopqsi 6745 th3q 6795 1nq 7561 addclnq 7570 mulclnq 7571 recexnq 7585 ltexnqq 7603 prarloclemarch 7613 prarloclemarch2 7614 nnnq 7617 nqnq0 7636 addnnnq0 7644 mulnnnq0 7645 addclnq0 7646 mulclnq0 7647 nqpnq0nq 7648 prarloclemlt 7688 prarloclemlo 7689 prarloclemcalc 7697 nqprm 7737 addsrpr 7940 mulsrpr 7941 0r 7945 1sr 7946 m1r 7947 addclsr 7948 mulclsr 7949 prsrcl 7979 mappsrprg 7999 suplocsrlemb 8001 pitonnlem2 8042 pitonn 8043 pitore 8045 recnnre 8046 |
| Copyright terms: Public domain | W3C validator |