Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecelqsi | GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsi.1 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
2 | ecelqsg 6554 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
3 | 1, 2 | mpan 421 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 [cec 6499 / cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-ec 6503 df-qs 6507 |
This theorem is referenced by: ecopqsi 6556 th3q 6606 1nq 7307 addclnq 7316 mulclnq 7317 recexnq 7331 ltexnqq 7349 prarloclemarch 7359 prarloclemarch2 7360 nnnq 7363 nqnq0 7382 addnnnq0 7390 mulnnnq0 7391 addclnq0 7392 mulclnq0 7393 nqpnq0nq 7394 prarloclemlt 7434 prarloclemlo 7435 prarloclemcalc 7443 nqprm 7483 addsrpr 7686 mulsrpr 7687 0r 7691 1sr 7692 m1r 7693 addclsr 7694 mulclsr 7695 prsrcl 7725 mappsrprg 7745 suplocsrlemb 7747 pitonnlem2 7788 pitonn 7789 pitore 7791 recnnre 7792 |
Copyright terms: Public domain | W3C validator |