ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsi GIF version

Theorem ecelqsi 6657
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecelqsi.1 𝑅 ∈ V
Assertion
Ref Expression
ecelqsi (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsi
StepHypRef Expression
1 ecelqsi.1 . 2 𝑅 ∈ V
2 ecelqsg 6656 . 2 ((𝑅 ∈ V ∧ 𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
31, 2mpan 424 1 (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  [cec 6599   / cqs 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-ec 6603  df-qs 6607
This theorem is referenced by:  ecopqsi  6658  th3q  6708  1nq  7450  addclnq  7459  mulclnq  7460  recexnq  7474  ltexnqq  7492  prarloclemarch  7502  prarloclemarch2  7503  nnnq  7506  nqnq0  7525  addnnnq0  7533  mulnnnq0  7534  addclnq0  7535  mulclnq0  7536  nqpnq0nq  7537  prarloclemlt  7577  prarloclemlo  7578  prarloclemcalc  7586  nqprm  7626  addsrpr  7829  mulsrpr  7830  0r  7834  1sr  7835  m1r  7836  addclsr  7837  mulclsr  7838  prsrcl  7868  mappsrprg  7888  suplocsrlemb  7890  pitonnlem2  7931  pitonn  7932  pitore  7934  recnnre  7935
  Copyright terms: Public domain W3C validator