![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecelqsi | GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsi.1 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
2 | ecelqsg 6436 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
3 | 1, 2 | mpan 418 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1463 Vcvv 2657 [cec 6381 / cqs 6382 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-xp 4505 df-cnv 4507 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-ec 6385 df-qs 6389 |
This theorem is referenced by: ecopqsi 6438 th3q 6488 1nq 7122 addclnq 7131 mulclnq 7132 recexnq 7146 ltexnqq 7164 prarloclemarch 7174 prarloclemarch2 7175 nnnq 7178 nqnq0 7197 addnnnq0 7205 mulnnnq0 7206 addclnq0 7207 mulclnq0 7208 nqpnq0nq 7209 prarloclemlt 7249 prarloclemlo 7250 prarloclemcalc 7258 nqprm 7298 addsrpr 7488 mulsrpr 7489 0r 7493 1sr 7494 m1r 7495 addclsr 7496 mulclsr 7497 prsrcl 7526 pitonnlem2 7582 pitonn 7583 pitore 7585 recnnre 7586 |
Copyright terms: Public domain | W3C validator |