![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecelqsi | GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsi.1 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
ecelqsi | ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecelqsi.1 | . 2 ⊢ 𝑅 ∈ V | |
2 | ecelqsg 6642 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) | |
3 | 1, 2 | mpan 424 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 2760 [cec 6585 / cqs 6586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-ec 6589 df-qs 6593 |
This theorem is referenced by: ecopqsi 6644 th3q 6694 1nq 7426 addclnq 7435 mulclnq 7436 recexnq 7450 ltexnqq 7468 prarloclemarch 7478 prarloclemarch2 7479 nnnq 7482 nqnq0 7501 addnnnq0 7509 mulnnnq0 7510 addclnq0 7511 mulclnq0 7512 nqpnq0nq 7513 prarloclemlt 7553 prarloclemlo 7554 prarloclemcalc 7562 nqprm 7602 addsrpr 7805 mulsrpr 7806 0r 7810 1sr 7811 m1r 7812 addclsr 7813 mulclsr 7814 prsrcl 7844 mappsrprg 7864 suplocsrlemb 7866 pitonnlem2 7907 pitonn 7908 pitore 7910 recnnre 7911 |
Copyright terms: Public domain | W3C validator |