| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltpsrprg | GIF version | ||
| Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| Ref | Expression |
|---|---|
| ltpsrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐴 ∈ P) | |
| 2 | 1pr 7709 | . . . 4 ⊢ 1P ∈ P | |
| 3 | enrex 7892 | . . . . 5 ⊢ ~R ∈ V | |
| 4 | df-nr 7882 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
| 5 | 3, 4 | ecopqsi 6707 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → [〈𝐴, 1P〉] ~R ∈ R) |
| 6 | 1, 2, 5 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐴, 1P〉] ~R ∈ R) |
| 7 | simp2 1003 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐵 ∈ P) | |
| 8 | 3, 4 | ecopqsi 6707 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → [〈𝐵, 1P〉] ~R ∈ R) |
| 9 | 7, 2, 8 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐵, 1P〉] ~R ∈ R) |
| 10 | simp3 1004 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐶 ∈ R) | |
| 11 | ltasrg 7925 | . . 3 ⊢ (([〈𝐴, 1P〉] ~R ∈ R ∧ [〈𝐵, 1P〉] ~R ∈ R ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) | |
| 12 | 6, 9, 10, 11 | syl3anc 1252 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) |
| 13 | addcomprg 7733 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
| 14 | 1, 2, 13 | sylancl 413 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴 +P 1P) = (1P +P 𝐴)) |
| 15 | 14 | breq1d 4072 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
| 16 | 2 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 1P ∈ P) |
| 17 | ltsrprg 7902 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 1P ∈ P) ∧ (𝐵 ∈ P ∧ 1P ∈ P)) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) | |
| 18 | 1, 16, 7, 16, 17 | syl22anc 1253 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) |
| 19 | ltaprg 7774 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
| 20 | 1, 7, 16, 19 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
| 21 | 15, 18, 20 | 3bitr4d 220 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ 𝐴<P 𝐵)) |
| 22 | 12, 21 | bitr3d 190 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 〈cop 3649 class class class wbr 4062 (class class class)co 5974 [cec 6648 Pcnp 7446 1Pc1p 7447 +P cpp 7448 <P cltp 7450 ~R cer 7451 Rcnr 7452 +R cplr 7456 <R cltr 7458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-2o 6533 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-enq0 7579 df-nq0 7580 df-0nq0 7581 df-plq0 7582 df-mq0 7583 df-inp 7621 df-i1p 7622 df-iplp 7623 df-iltp 7625 df-enr 7881 df-nr 7882 df-plr 7883 df-ltr 7885 |
| This theorem is referenced by: suplocsrlemb 7961 suplocsrlempr 7962 suplocsrlem 7963 |
| Copyright terms: Public domain | W3C validator |