| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltpsrprg | GIF version | ||
| Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| Ref | Expression |
|---|---|
| ltpsrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐴 ∈ P) | |
| 2 | 1pr 7674 | . . . 4 ⊢ 1P ∈ P | |
| 3 | enrex 7857 | . . . . 5 ⊢ ~R ∈ V | |
| 4 | df-nr 7847 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
| 5 | 3, 4 | ecopqsi 6684 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → [〈𝐴, 1P〉] ~R ∈ R) |
| 6 | 1, 2, 5 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐴, 1P〉] ~R ∈ R) |
| 7 | simp2 1001 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐵 ∈ P) | |
| 8 | 3, 4 | ecopqsi 6684 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → [〈𝐵, 1P〉] ~R ∈ R) |
| 9 | 7, 2, 8 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐵, 1P〉] ~R ∈ R) |
| 10 | simp3 1002 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐶 ∈ R) | |
| 11 | ltasrg 7890 | . . 3 ⊢ (([〈𝐴, 1P〉] ~R ∈ R ∧ [〈𝐵, 1P〉] ~R ∈ R ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) | |
| 12 | 6, 9, 10, 11 | syl3anc 1250 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) |
| 13 | addcomprg 7698 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
| 14 | 1, 2, 13 | sylancl 413 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴 +P 1P) = (1P +P 𝐴)) |
| 15 | 14 | breq1d 4057 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
| 16 | 2 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 1P ∈ P) |
| 17 | ltsrprg 7867 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 1P ∈ P) ∧ (𝐵 ∈ P ∧ 1P ∈ P)) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) | |
| 18 | 1, 16, 7, 16, 17 | syl22anc 1251 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) |
| 19 | ltaprg 7739 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
| 20 | 1, 7, 16, 19 | syl3anc 1250 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
| 21 | 15, 18, 20 | 3bitr4d 220 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ 𝐴<P 𝐵)) |
| 22 | 12, 21 | bitr3d 190 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 〈cop 3637 class class class wbr 4047 (class class class)co 5951 [cec 6625 Pcnp 7411 1Pc1p 7412 +P cpp 7413 <P cltp 7415 ~R cer 7416 Rcnr 7417 +R cplr 7421 <R cltr 7423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-2o 6510 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-enq0 7544 df-nq0 7545 df-0nq0 7546 df-plq0 7547 df-mq0 7548 df-inp 7586 df-i1p 7587 df-iplp 7588 df-iltp 7590 df-enr 7846 df-nr 7847 df-plr 7848 df-ltr 7850 |
| This theorem is referenced by: suplocsrlemb 7926 suplocsrlempr 7927 suplocsrlem 7928 |
| Copyright terms: Public domain | W3C validator |