Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltpsrprg | GIF version |
Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
Ref | Expression |
---|---|
ltpsrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 982 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐴 ∈ P) | |
2 | 1pr 7474 | . . . 4 ⊢ 1P ∈ P | |
3 | enrex 7657 | . . . . 5 ⊢ ~R ∈ V | |
4 | df-nr 7647 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
5 | 3, 4 | ecopqsi 6535 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → [〈𝐴, 1P〉] ~R ∈ R) |
6 | 1, 2, 5 | sylancl 410 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐴, 1P〉] ~R ∈ R) |
7 | simp2 983 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐵 ∈ P) | |
8 | 3, 4 | ecopqsi 6535 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → [〈𝐵, 1P〉] ~R ∈ R) |
9 | 7, 2, 8 | sylancl 410 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐵, 1P〉] ~R ∈ R) |
10 | simp3 984 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐶 ∈ R) | |
11 | ltasrg 7690 | . . 3 ⊢ (([〈𝐴, 1P〉] ~R ∈ R ∧ [〈𝐵, 1P〉] ~R ∈ R ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) | |
12 | 6, 9, 10, 11 | syl3anc 1220 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) |
13 | addcomprg 7498 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
14 | 1, 2, 13 | sylancl 410 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴 +P 1P) = (1P +P 𝐴)) |
15 | 14 | breq1d 3975 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
16 | 2 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 1P ∈ P) |
17 | ltsrprg 7667 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 1P ∈ P) ∧ (𝐵 ∈ P ∧ 1P ∈ P)) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) | |
18 | 1, 16, 7, 16, 17 | syl22anc 1221 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) |
19 | ltaprg 7539 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
20 | 1, 7, 16, 19 | syl3anc 1220 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
21 | 15, 18, 20 | 3bitr4d 219 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ 𝐴<P 𝐵)) |
22 | 12, 21 | bitr3d 189 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 〈cop 3563 class class class wbr 3965 (class class class)co 5824 [cec 6478 Pcnp 7211 1Pc1p 7212 +P cpp 7213 <P cltp 7215 ~R cer 7216 Rcnr 7217 +R cplr 7221 <R cltr 7223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-1o 6363 df-2o 6364 df-oadd 6367 df-omul 6368 df-er 6480 df-ec 6482 df-qs 6486 df-ni 7224 df-pli 7225 df-mi 7226 df-lti 7227 df-plpq 7264 df-mpq 7265 df-enq 7267 df-nqqs 7268 df-plqqs 7269 df-mqqs 7270 df-1nqqs 7271 df-rq 7272 df-ltnqqs 7273 df-enq0 7344 df-nq0 7345 df-0nq0 7346 df-plq0 7347 df-mq0 7348 df-inp 7386 df-i1p 7387 df-iplp 7388 df-iltp 7390 df-enr 7646 df-nr 7647 df-plr 7648 df-ltr 7650 |
This theorem is referenced by: suplocsrlemb 7726 suplocsrlempr 7727 suplocsrlem 7728 |
Copyright terms: Public domain | W3C validator |