![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltpsrprg | GIF version |
Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
Ref | Expression |
---|---|
ltpsrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [⟨𝐴, 1P⟩] ~R ) <R (𝐶 +R [⟨𝐵, 1P⟩] ~R ) ↔ 𝐴<P 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐴 ∈ P) | |
2 | 1pr 7556 | . . . 4 ⊢ 1P ∈ P | |
3 | enrex 7739 | . . . . 5 ⊢ ~R ∈ V | |
4 | df-nr 7729 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
5 | 3, 4 | ecopqsi 6593 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → [⟨𝐴, 1P⟩] ~R ∈ R) |
6 | 1, 2, 5 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [⟨𝐴, 1P⟩] ~R ∈ R) |
7 | simp2 998 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐵 ∈ P) | |
8 | 3, 4 | ecopqsi 6593 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → [⟨𝐵, 1P⟩] ~R ∈ R) |
9 | 7, 2, 8 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [⟨𝐵, 1P⟩] ~R ∈ R) |
10 | simp3 999 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐶 ∈ R) | |
11 | ltasrg 7772 | . . 3 ⊢ (([⟨𝐴, 1P⟩] ~R ∈ R ∧ [⟨𝐵, 1P⟩] ~R ∈ R ∧ 𝐶 ∈ R) → ([⟨𝐴, 1P⟩] ~R <R [⟨𝐵, 1P⟩] ~R ↔ (𝐶 +R [⟨𝐴, 1P⟩] ~R ) <R (𝐶 +R [⟨𝐵, 1P⟩] ~R ))) | |
12 | 6, 9, 10, 11 | syl3anc 1238 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([⟨𝐴, 1P⟩] ~R <R [⟨𝐵, 1P⟩] ~R ↔ (𝐶 +R [⟨𝐴, 1P⟩] ~R ) <R (𝐶 +R [⟨𝐵, 1P⟩] ~R ))) |
13 | addcomprg 7580 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
14 | 1, 2, 13 | sylancl 413 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴 +P 1P) = (1P +P 𝐴)) |
15 | 14 | breq1d 4015 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
16 | 2 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 1P ∈ P) |
17 | ltsrprg 7749 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 1P ∈ P) ∧ (𝐵 ∈ P ∧ 1P ∈ P)) → ([⟨𝐴, 1P⟩] ~R <R [⟨𝐵, 1P⟩] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) | |
18 | 1, 16, 7, 16, 17 | syl22anc 1239 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([⟨𝐴, 1P⟩] ~R <R [⟨𝐵, 1P⟩] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) |
19 | ltaprg 7621 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
20 | 1, 7, 16, 19 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
21 | 15, 18, 20 | 3bitr4d 220 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([⟨𝐴, 1P⟩] ~R <R [⟨𝐵, 1P⟩] ~R ↔ 𝐴<P 𝐵)) |
22 | 12, 21 | bitr3d 190 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [⟨𝐴, 1P⟩] ~R ) <R (𝐶 +R [⟨𝐵, 1P⟩] ~R ) ↔ 𝐴<P 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 (class class class)co 5878 [cec 6536 Pcnp 7293 1Pc1p 7294 +P cpp 7295 <P cltp 7297 ~R cer 7298 Rcnr 7299 +R cplr 7303 <R cltr 7305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-1o 6420 df-2o 6421 df-oadd 6424 df-omul 6425 df-er 6538 df-ec 6540 df-qs 6544 df-ni 7306 df-pli 7307 df-mi 7308 df-lti 7309 df-plpq 7346 df-mpq 7347 df-enq 7349 df-nqqs 7350 df-plqqs 7351 df-mqqs 7352 df-1nqqs 7353 df-rq 7354 df-ltnqqs 7355 df-enq0 7426 df-nq0 7427 df-0nq0 7428 df-plq0 7429 df-mq0 7430 df-inp 7468 df-i1p 7469 df-iplp 7470 df-iltp 7472 df-enr 7728 df-nr 7729 df-plr 7730 df-ltr 7732 |
This theorem is referenced by: suplocsrlemb 7808 suplocsrlempr 7809 suplocsrlem 7810 |
Copyright terms: Public domain | W3C validator |