Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltpsrprg | GIF version |
Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
Ref | Expression |
---|---|
ltpsrprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 987 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐴 ∈ P) | |
2 | 1pr 7495 | . . . 4 ⊢ 1P ∈ P | |
3 | enrex 7678 | . . . . 5 ⊢ ~R ∈ V | |
4 | df-nr 7668 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
5 | 3, 4 | ecopqsi 6556 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → [〈𝐴, 1P〉] ~R ∈ R) |
6 | 1, 2, 5 | sylancl 410 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐴, 1P〉] ~R ∈ R) |
7 | simp2 988 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐵 ∈ P) | |
8 | 3, 4 | ecopqsi 6556 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 1P ∈ P) → [〈𝐵, 1P〉] ~R ∈ R) |
9 | 7, 2, 8 | sylancl 410 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → [〈𝐵, 1P〉] ~R ∈ R) |
10 | simp3 989 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 𝐶 ∈ R) | |
11 | ltasrg 7711 | . . 3 ⊢ (([〈𝐴, 1P〉] ~R ∈ R ∧ [〈𝐵, 1P〉] ~R ∈ R ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) | |
12 | 6, 9, 10, 11 | syl3anc 1228 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ))) |
13 | addcomprg 7519 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) = (1P +P 𝐴)) | |
14 | 1, 2, 13 | sylancl 410 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴 +P 1P) = (1P +P 𝐴)) |
15 | 14 | breq1d 3992 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐴 +P 1P)<P (1P +P 𝐵) ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
16 | 2 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → 1P ∈ P) |
17 | ltsrprg 7688 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 1P ∈ P) ∧ (𝐵 ∈ P ∧ 1P ∈ P)) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) | |
18 | 1, 16, 7, 16, 17 | syl22anc 1229 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ (𝐴 +P 1P)<P (1P +P 𝐵))) |
19 | ltaprg 7560 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 1P ∈ P) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) | |
20 | 1, 7, 16, 19 | syl3anc 1228 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → (𝐴<P 𝐵 ↔ (1P +P 𝐴)<P (1P +P 𝐵))) |
21 | 15, 18, 20 | 3bitr4d 219 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ([〈𝐴, 1P〉] ~R <R [〈𝐵, 1P〉] ~R ↔ 𝐴<P 𝐵)) |
22 | 12, 21 | bitr3d 189 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ R) → ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 (class class class)co 5842 [cec 6499 Pcnp 7232 1Pc1p 7233 +P cpp 7234 <P cltp 7236 ~R cer 7237 Rcnr 7238 +R cplr 7242 <R cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-iltp 7411 df-enr 7667 df-nr 7668 df-plr 7669 df-ltr 7671 |
This theorem is referenced by: suplocsrlemb 7747 suplocsrlempr 7748 suplocsrlem 7749 |
Copyright terms: Public domain | W3C validator |