ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodconst GIF version

Theorem fprodconst 11802
Description: The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11735 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 fveq2 5561 . . . 4 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
32oveq2d 5941 . . 3 (𝑤 = ∅ → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘∅)))
41, 3eqeq12d 2211 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘 ∈ ∅ 𝐵 = (𝐵↑(♯‘∅))))
5 prodeq1 11735 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
6 fveq2 5561 . . . 4 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
76oveq2d 5941 . . 3 (𝑤 = 𝑦 → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘𝑦)))
85, 7eqeq12d 2211 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))))
9 prodeq1 11735 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
10 fveq2 5561 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1110oveq2d 5941 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))))
129, 11eqeq12d 2211 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧})))))
13 prodeq1 11735 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
14 fveq2 5561 . . . 4 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
1514oveq2d 5941 . . 3 (𝑤 = 𝐴 → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘𝐴)))
1613, 15eqeq12d 2211 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
17 prod0 11767 . . 3 𝑘 ∈ ∅ 𝐵 = 1
18 hash0 10905 . . . . 5 (♯‘∅) = 0
1918oveq2i 5936 . . . 4 (𝐵↑(♯‘∅)) = (𝐵↑0)
20 simpr 110 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2120exp0d 10776 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2219, 21eqtrid 2241 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐵↑(♯‘∅)) = 1)
2317, 22eqtr4id 2248 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ ∅ 𝐵 = (𝐵↑(♯‘∅)))
24 simpr 110 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦)))
2524oveq1d 5940 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵))
26 nfcv 2339 . . . . . . 7 𝑘𝐵
27 simplr 528 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
28 simprr 531 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2928eldifbd 3169 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
30 simp-4r 542 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
31 simpllr 534 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝐵 ∈ ℂ)
32 eqidd 2197 . . . . . . 7 (𝑘 = 𝑧𝐵 = 𝐵)
3326, 27, 28, 29, 30, 31, 32fprodunsn 11786 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝐵))
3427, 29jca 306 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
35 hashunsng 10916 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
3628, 34, 35sylc 62 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
3736oveq2d 5941 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) = (𝐵↑((♯‘𝑦) + 1)))
38 hashcl 10890 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
3927, 38syl 14 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℕ0)
4031, 39expp1d 10783 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑((♯‘𝑦) + 1)) = ((𝐵↑(♯‘𝑦)) · 𝐵))
4137, 40eqtrd 2229 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) = ((𝐵↑(♯‘𝑦)) · 𝐵))
4233, 41eqeq12d 2211 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) ↔ (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵)))
4342adantr 276 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) ↔ (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵)))
4425, 43mpbird 167 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))))
4544ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧})))))
46 simpl 109 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin)
474, 8, 12, 16, 23, 45, 46findcard2sd 6962 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cdif 3154  cun 3155  wss 3157  c0 3451  {csn 3623  cfv 5259  (class class class)co 5925  Fincfn 6808  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  0cn0 9266  cexp 10647  chash 10884  cprod 11732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733
This theorem is referenced by:  gausslemma2dlem5  15391  gausslemma2dlem6  15392
  Copyright terms: Public domain W3C validator