ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodconst GIF version

Theorem fprodconst 11785
Description: The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11718 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 fveq2 5558 . . . 4 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
32oveq2d 5938 . . 3 (𝑤 = ∅ → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘∅)))
41, 3eqeq12d 2211 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘 ∈ ∅ 𝐵 = (𝐵↑(♯‘∅))))
5 prodeq1 11718 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
6 fveq2 5558 . . . 4 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
76oveq2d 5938 . . 3 (𝑤 = 𝑦 → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘𝑦)))
85, 7eqeq12d 2211 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))))
9 prodeq1 11718 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
10 fveq2 5558 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1110oveq2d 5938 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))))
129, 11eqeq12d 2211 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧})))))
13 prodeq1 11718 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
14 fveq2 5558 . . . 4 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
1514oveq2d 5938 . . 3 (𝑤 = 𝐴 → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘𝐴)))
1613, 15eqeq12d 2211 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
17 prod0 11750 . . 3 𝑘 ∈ ∅ 𝐵 = 1
18 hash0 10888 . . . . 5 (♯‘∅) = 0
1918oveq2i 5933 . . . 4 (𝐵↑(♯‘∅)) = (𝐵↑0)
20 simpr 110 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2120exp0d 10759 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2219, 21eqtrid 2241 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐵↑(♯‘∅)) = 1)
2317, 22eqtr4id 2248 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ ∅ 𝐵 = (𝐵↑(♯‘∅)))
24 simpr 110 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦)))
2524oveq1d 5937 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵))
26 nfcv 2339 . . . . . . 7 𝑘𝐵
27 simplr 528 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
28 simprr 531 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2928eldifbd 3169 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
30 simp-4r 542 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
31 simpllr 534 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝐵 ∈ ℂ)
32 eqidd 2197 . . . . . . 7 (𝑘 = 𝑧𝐵 = 𝐵)
3326, 27, 28, 29, 30, 31, 32fprodunsn 11769 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝐵))
3427, 29jca 306 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
35 hashunsng 10899 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
3628, 34, 35sylc 62 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
3736oveq2d 5938 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) = (𝐵↑((♯‘𝑦) + 1)))
38 hashcl 10873 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
3927, 38syl 14 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℕ0)
4031, 39expp1d 10766 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑((♯‘𝑦) + 1)) = ((𝐵↑(♯‘𝑦)) · 𝐵))
4137, 40eqtrd 2229 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) = ((𝐵↑(♯‘𝑦)) · 𝐵))
4233, 41eqeq12d 2211 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) ↔ (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵)))
4342adantr 276 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) ↔ (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵)))
4425, 43mpbird 167 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))))
4544ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧})))))
46 simpl 109 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin)
474, 8, 12, 16, 23, 45, 46findcard2sd 6953 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622  cfv 5258  (class class class)co 5922  Fincfn 6799  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  0cn0 9249  cexp 10630  chash 10867  cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  gausslemma2dlem5  15307  gausslemma2dlem6  15308
  Copyright terms: Public domain W3C validator