ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodconst GIF version

Theorem fprodconst 11975
Description: The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11908 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 fveq2 5583 . . . 4 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
32oveq2d 5967 . . 3 (𝑤 = ∅ → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘∅)))
41, 3eqeq12d 2221 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘 ∈ ∅ 𝐵 = (𝐵↑(♯‘∅))))
5 prodeq1 11908 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
6 fveq2 5583 . . . 4 (𝑤 = 𝑦 → (♯‘𝑤) = (♯‘𝑦))
76oveq2d 5967 . . 3 (𝑤 = 𝑦 → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘𝑦)))
85, 7eqeq12d 2221 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))))
9 prodeq1 11908 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
10 fveq2 5583 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (♯‘𝑤) = (♯‘(𝑦 ∪ {𝑧})))
1110oveq2d 5967 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))))
129, 11eqeq12d 2221 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧})))))
13 prodeq1 11908 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
14 fveq2 5583 . . . 4 (𝑤 = 𝐴 → (♯‘𝑤) = (♯‘𝐴))
1514oveq2d 5967 . . 3 (𝑤 = 𝐴 → (𝐵↑(♯‘𝑤)) = (𝐵↑(♯‘𝐴)))
1613, 15eqeq12d 2221 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 = (𝐵↑(♯‘𝑤)) ↔ ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
17 prod0 11940 . . 3 𝑘 ∈ ∅ 𝐵 = 1
18 hash0 10948 . . . . 5 (♯‘∅) = 0
1918oveq2i 5962 . . . 4 (𝐵↑(♯‘∅)) = (𝐵↑0)
20 simpr 110 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2120exp0d 10819 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2219, 21eqtrid 2251 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐵↑(♯‘∅)) = 1)
2317, 22eqtr4id 2258 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ ∅ 𝐵 = (𝐵↑(♯‘∅)))
24 simpr 110 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦)))
2524oveq1d 5966 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵))
26 nfcv 2349 . . . . . . 7 𝑘𝐵
27 simplr 528 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
28 simprr 531 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2928eldifbd 3179 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
30 simp-4r 542 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
31 simpllr 534 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝐵 ∈ ℂ)
32 eqidd 2207 . . . . . . 7 (𝑘 = 𝑧𝐵 = 𝐵)
3326, 27, 28, 29, 30, 31, 32fprodunsn 11959 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝐵))
3427, 29jca 306 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
35 hashunsng 10959 . . . . . . . . 9 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
3628, 34, 35sylc 62 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
3736oveq2d 5967 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) = (𝐵↑((♯‘𝑦) + 1)))
38 hashcl 10933 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
3927, 38syl 14 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℕ0)
4031, 39expp1d 10826 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑((♯‘𝑦) + 1)) = ((𝐵↑(♯‘𝑦)) · 𝐵))
4137, 40eqtrd 2239 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) = ((𝐵↑(♯‘𝑦)) · 𝐵))
4233, 41eqeq12d 2221 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) ↔ (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵)))
4342adantr 276 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))) ↔ (∏𝑘𝑦 𝐵 · 𝐵) = ((𝐵↑(♯‘𝑦)) · 𝐵)))
4425, 43mpbird 167 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧}))))
4544ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 = (𝐵↑(♯‘𝑦)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (𝐵↑(♯‘(𝑦 ∪ {𝑧})))))
46 simpl 109 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ Fin)
474, 8, 12, 16, 23, 45, 46findcard2sd 6996 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  cdif 3164  cun 3165  wss 3167  c0 3461  {csn 3634  cfv 5276  (class class class)co 5951  Fincfn 6834  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937  0cn0 9302  cexp 10690  chash 10927  cprod 11905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906
This theorem is referenced by:  gausslemma2dlem5  15587  gausslemma2dlem6  15588
  Copyright terms: Public domain W3C validator