ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelima GIF version

Theorem fvelima 5538
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
fvelima ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvelima
StepHypRef Expression
1 elimag 4950 . . . 4 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
21ibi 175 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
3 funbrfv 5525 . . . 4 (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹𝑥) = 𝐴))
43reximdv 2567 . . 3 (Fun 𝐹 → (∃𝑥𝐵 𝑥𝐹𝐴 → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
52, 4syl5 32 . 2 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
65imp 123 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  cima 4607  Fun wfun 5182  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by:  ssimaex  5547  ctssdccl  7076  suplocexprlemmu  7659  suplocexprlemloc  7662  ennnfonelemex  12347
  Copyright terms: Public domain W3C validator