ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelima GIF version

Theorem fvelima 5520
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
fvelima ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvelima
StepHypRef Expression
1 elimag 4932 . . . 4 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
21ibi 175 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
3 funbrfv 5507 . . . 4 (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹𝑥) = 𝐴))
43reximdv 2558 . . 3 (Fun 𝐹 → (∃𝑥𝐵 𝑥𝐹𝐴 → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
52, 4syl5 32 . 2 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
65imp 123 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  wrex 2436   class class class wbr 3965  cima 4589  Fun wfun 5164  cfv 5170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fv 5178
This theorem is referenced by:  ssimaex  5529  ctssdccl  7055  suplocexprlemmu  7638  suplocexprlemloc  7641  ennnfonelemex  12143
  Copyright terms: Public domain W3C validator