ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelima GIF version

Theorem fvelima 5439
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
fvelima ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvelima
StepHypRef Expression
1 elimag 4853 . . . 4 (𝐴 ∈ (𝐹𝐵) → (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 𝑥𝐹𝐴))
21ibi 175 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 𝑥𝐹𝐴)
3 funbrfv 5426 . . . 4 (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹𝑥) = 𝐴))
43reximdv 2508 . . 3 (Fun 𝐹 → (∃𝑥𝐵 𝑥𝐹𝐴 → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
52, 4syl5 32 . 2 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴))
65imp 123 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wrex 2392   class class class wbr 3897  cima 4510  Fun wfun 5085  cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fv 5099
This theorem is referenced by:  ssimaex  5448  ctssdccl  6962  suplocexprlemmu  7490  suplocexprlemloc  7493  ennnfonelemex  11822
  Copyright terms: Public domain W3C validator