ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap GIF version

Theorem cnopnap 15083
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Distinct variable group:   𝑤,𝐴

Proof of Theorem cnopnap
Dummy variables 𝑟 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3278 . . 3 {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ
21a1i 9 . 2 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ)
3 breq1 4047 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 # 𝐴𝑥 # 𝐴))
43elrab 2929 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
54biimpi 120 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
65adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
76simpld 112 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 ∈ ℂ)
8 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝐴 ∈ ℂ)
97, 8subcld 8383 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) ∈ ℂ)
106simprd 114 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 # 𝐴)
117, 8, 10subap0d 8717 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) # 0)
129, 11absrpclapd 11499 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ+)
13 breq1 4047 . . . . . . 7 (𝑤 = 𝑧 → (𝑤 # 𝐴𝑧 # 𝐴))
14 cnxmet 15003 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
159abscld 11492 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ)
1615rexrd 8122 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ*)
17 elbl 14863 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(𝑥𝐴)) ∈ ℝ*) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1814, 7, 16, 17mp3an2i 1355 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1918biimpa 296 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴))))
2019simpld 112 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ ℂ)
218adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝐴 ∈ ℂ)
2220, 21subcld 8383 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) ∈ ℂ)
2322abscld 11492 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) ∈ ℝ)
247adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑥 ∈ ℂ)
2524, 20subcld 8383 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥𝑧) ∈ ℂ)
2625abscld 11492 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) ∈ ℝ)
2715adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ∈ ℝ)
2826, 23readdcld 8102 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))) ∈ ℝ)
29 eqid 2205 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 15001 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3124, 20, 30syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3219simprd 114 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))
3331, 32eqbrtrrd 4068 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < (abs‘(𝑥𝐴)))
3424, 21, 20abs3difd 11511 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3526, 27, 28, 33, 34ltletrd 8496 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3623, 26ltaddposd 8602 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (0 < (abs‘(𝑧𝐴)) ↔ (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴)))))
3735, 36mpbird 167 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 0 < (abs‘(𝑧𝐴)))
3823, 37gt0ap0d 8702 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) # 0)
39 abs00ap 11373 . . . . . . . . . 10 ((𝑧𝐴) ∈ ℂ → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4022, 39syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4138, 40mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) # 0)
42 subap0 8716 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4320, 21, 42syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4441, 43mpbid 147 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 # 𝐴)
4513, 20, 44elrabd 2931 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
4645ex 115 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
4746ssrdv 3199 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
48 oveq2 5952 . . . . . 6 (𝑟 = (abs‘(𝑥𝐴)) → (𝑥(ball‘(abs ∘ − ))𝑟) = (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))))
4948sseq1d 3222 . . . . 5 (𝑟 = (abs‘(𝑥𝐴)) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
5049rspcev 2877 . . . 4 (((abs‘(𝑥𝐴)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5112, 47, 50syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5251ralrimiva 2579 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
53 eqid 2205 . . . 4 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5453elmopn2 14921 . . 3 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})))
5514, 54ax-mp 5 . 2 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
562, 52, 55sylanbrc 417 1 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  wrex 2485  {crab 2488  wss 3166   class class class wbr 4044  ccom 4679  cfv 5271  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925   + caddc 7928  *cxr 8106   < clt 8107  cmin 8243   # cap 8654  +crp 9775  abscabs 11308  ∞Metcxmet 14298  ballcbl 14300  MetOpencmopn 14303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-bases 14515
This theorem is referenced by:  dvrecap  15185
  Copyright terms: Public domain W3C validator