ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap GIF version

Theorem cnopnap 14790
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Distinct variable group:   𝑤,𝐴

Proof of Theorem cnopnap
Dummy variables 𝑟 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3265 . . 3 {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ
21a1i 9 . 2 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ)
3 breq1 4033 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 # 𝐴𝑥 # 𝐴))
43elrab 2917 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
54biimpi 120 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
65adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
76simpld 112 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 ∈ ℂ)
8 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝐴 ∈ ℂ)
97, 8subcld 8332 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) ∈ ℂ)
106simprd 114 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 # 𝐴)
117, 8, 10subap0d 8665 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) # 0)
129, 11absrpclapd 11335 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ+)
13 breq1 4033 . . . . . . 7 (𝑤 = 𝑧 → (𝑤 # 𝐴𝑧 # 𝐴))
14 cnxmet 14710 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
159abscld 11328 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ)
1615rexrd 8071 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ*)
17 elbl 14570 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(𝑥𝐴)) ∈ ℝ*) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1814, 7, 16, 17mp3an2i 1353 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1918biimpa 296 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴))))
2019simpld 112 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ ℂ)
218adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝐴 ∈ ℂ)
2220, 21subcld 8332 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) ∈ ℂ)
2322abscld 11328 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) ∈ ℝ)
247adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑥 ∈ ℂ)
2524, 20subcld 8332 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥𝑧) ∈ ℂ)
2625abscld 11328 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) ∈ ℝ)
2715adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ∈ ℝ)
2826, 23readdcld 8051 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))) ∈ ℝ)
29 eqid 2193 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 14708 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3124, 20, 30syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3219simprd 114 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))
3331, 32eqbrtrrd 4054 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < (abs‘(𝑥𝐴)))
3424, 21, 20abs3difd 11347 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3526, 27, 28, 33, 34ltletrd 8444 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3623, 26ltaddposd 8550 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (0 < (abs‘(𝑧𝐴)) ↔ (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴)))))
3735, 36mpbird 167 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 0 < (abs‘(𝑧𝐴)))
3823, 37gt0ap0d 8650 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) # 0)
39 abs00ap 11209 . . . . . . . . . 10 ((𝑧𝐴) ∈ ℂ → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4022, 39syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4138, 40mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) # 0)
42 subap0 8664 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4320, 21, 42syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4441, 43mpbid 147 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 # 𝐴)
4513, 20, 44elrabd 2919 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
4645ex 115 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
4746ssrdv 3186 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
48 oveq2 5927 . . . . . 6 (𝑟 = (abs‘(𝑥𝐴)) → (𝑥(ball‘(abs ∘ − ))𝑟) = (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))))
4948sseq1d 3209 . . . . 5 (𝑟 = (abs‘(𝑥𝐴)) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
5049rspcev 2865 . . . 4 (((abs‘(𝑥𝐴)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5112, 47, 50syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5251ralrimiva 2567 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
53 eqid 2193 . . . 4 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5453elmopn2 14628 . . 3 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})))
5514, 54ax-mp 5 . 2 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
562, 52, 55sylanbrc 417 1 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476  wss 3154   class class class wbr 4030  ccom 4664  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874   + caddc 7877  *cxr 8055   < clt 8056  cmin 8192   # cap 8602  +crp 9722  abscabs 11144  ∞Metcxmet 14035  ballcbl 14037  MetOpencmopn 14040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-bases 14222
This theorem is referenced by:  dvrecap  14892
  Copyright terms: Public domain W3C validator