ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap GIF version

Theorem cnopnap 15198
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Distinct variable group:   𝑤,𝐴

Proof of Theorem cnopnap
Dummy variables 𝑟 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3286 . . 3 {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ
21a1i 9 . 2 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ)
3 breq1 4062 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 # 𝐴𝑥 # 𝐴))
43elrab 2936 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
54biimpi 120 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
65adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
76simpld 112 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 ∈ ℂ)
8 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝐴 ∈ ℂ)
97, 8subcld 8418 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) ∈ ℂ)
106simprd 114 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 # 𝐴)
117, 8, 10subap0d 8752 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) # 0)
129, 11absrpclapd 11614 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ+)
13 breq1 4062 . . . . . . 7 (𝑤 = 𝑧 → (𝑤 # 𝐴𝑧 # 𝐴))
14 cnxmet 15118 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
159abscld 11607 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ)
1615rexrd 8157 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ*)
17 elbl 14978 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(𝑥𝐴)) ∈ ℝ*) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1814, 7, 16, 17mp3an2i 1355 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1918biimpa 296 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴))))
2019simpld 112 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ ℂ)
218adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝐴 ∈ ℂ)
2220, 21subcld 8418 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) ∈ ℂ)
2322abscld 11607 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) ∈ ℝ)
247adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑥 ∈ ℂ)
2524, 20subcld 8418 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥𝑧) ∈ ℂ)
2625abscld 11607 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) ∈ ℝ)
2715adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ∈ ℝ)
2826, 23readdcld 8137 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))) ∈ ℝ)
29 eqid 2207 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 15116 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3124, 20, 30syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3219simprd 114 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))
3331, 32eqbrtrrd 4083 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < (abs‘(𝑥𝐴)))
3424, 21, 20abs3difd 11626 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3526, 27, 28, 33, 34ltletrd 8531 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3623, 26ltaddposd 8637 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (0 < (abs‘(𝑧𝐴)) ↔ (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴)))))
3735, 36mpbird 167 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 0 < (abs‘(𝑧𝐴)))
3823, 37gt0ap0d 8737 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) # 0)
39 abs00ap 11488 . . . . . . . . . 10 ((𝑧𝐴) ∈ ℂ → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4022, 39syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4138, 40mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) # 0)
42 subap0 8751 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4320, 21, 42syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4441, 43mpbid 147 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 # 𝐴)
4513, 20, 44elrabd 2938 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
4645ex 115 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
4746ssrdv 3207 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
48 oveq2 5975 . . . . . 6 (𝑟 = (abs‘(𝑥𝐴)) → (𝑥(ball‘(abs ∘ − ))𝑟) = (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))))
4948sseq1d 3230 . . . . 5 (𝑟 = (abs‘(𝑥𝐴)) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
5049rspcev 2884 . . . 4 (((abs‘(𝑥𝐴)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5112, 47, 50syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5251ralrimiva 2581 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
53 eqid 2207 . . . 4 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5453elmopn2 15036 . . 3 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})))
5514, 54ax-mp 5 . 2 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
562, 52, 55sylanbrc 417 1 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wral 2486  wrex 2487  {crab 2490  wss 3174   class class class wbr 4059  ccom 4697  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960   + caddc 7963  *cxr 8141   < clt 8142  cmin 8278   # cap 8689  +crp 9810  abscabs 11423  ∞Metcxmet 14413  ballcbl 14415  MetOpencmopn 14418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-bases 14630
This theorem is referenced by:  dvrecap  15300
  Copyright terms: Public domain W3C validator