ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap GIF version

Theorem cnopnap 13234
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Distinct variable group:   𝑤,𝐴

Proof of Theorem cnopnap
Dummy variables 𝑟 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3227 . . 3 {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ
21a1i 9 . 2 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ)
3 breq1 3985 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 # 𝐴𝑥 # 𝐴))
43elrab 2882 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
54biimpi 119 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
65adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
76simpld 111 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 ∈ ℂ)
8 simpl 108 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝐴 ∈ ℂ)
97, 8subcld 8209 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) ∈ ℂ)
106simprd 113 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 # 𝐴)
117, 8, 10subap0d 8542 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) # 0)
129, 11absrpclapd 11130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ+)
13 breq1 3985 . . . . . . 7 (𝑤 = 𝑧 → (𝑤 # 𝐴𝑧 # 𝐴))
14 cnxmet 13171 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
159abscld 11123 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ)
1615rexrd 7948 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ*)
17 elbl 13031 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(𝑥𝐴)) ∈ ℝ*) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1814, 7, 16, 17mp3an2i 1332 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1918biimpa 294 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴))))
2019simpld 111 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ ℂ)
218adantr 274 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝐴 ∈ ℂ)
2220, 21subcld 8209 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) ∈ ℂ)
2322abscld 11123 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) ∈ ℝ)
247adantr 274 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑥 ∈ ℂ)
2524, 20subcld 8209 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥𝑧) ∈ ℂ)
2625abscld 11123 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) ∈ ℝ)
2715adantr 274 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ∈ ℝ)
2826, 23readdcld 7928 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))) ∈ ℝ)
29 eqid 2165 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 13169 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3124, 20, 30syl2anc 409 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3219simprd 113 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))
3331, 32eqbrtrrd 4006 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < (abs‘(𝑥𝐴)))
3424, 21, 20abs3difd 11142 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3526, 27, 28, 33, 34ltletrd 8321 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3623, 26ltaddposd 8427 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (0 < (abs‘(𝑧𝐴)) ↔ (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴)))))
3735, 36mpbird 166 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 0 < (abs‘(𝑧𝐴)))
3823, 37gt0ap0d 8527 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) # 0)
39 abs00ap 11004 . . . . . . . . . 10 ((𝑧𝐴) ∈ ℂ → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4022, 39syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4138, 40mpbid 146 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) # 0)
42 subap0 8541 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4320, 21, 42syl2anc 409 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4441, 43mpbid 146 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 # 𝐴)
4513, 20, 44elrabd 2884 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
4645ex 114 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
4746ssrdv 3148 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
48 oveq2 5850 . . . . . 6 (𝑟 = (abs‘(𝑥𝐴)) → (𝑥(ball‘(abs ∘ − ))𝑟) = (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))))
4948sseq1d 3171 . . . . 5 (𝑟 = (abs‘(𝑥𝐴)) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
5049rspcev 2830 . . . 4 (((abs‘(𝑥𝐴)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5112, 47, 50syl2anc 409 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5251ralrimiva 2539 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
53 eqid 2165 . . . 4 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5453elmopn2 13089 . . 3 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})))
5514, 54ax-mp 5 . 2 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
562, 52, 55sylanbrc 414 1 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116   class class class wbr 3982  ccom 4608  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753   + caddc 7756  *cxr 7932   < clt 7933  cmin 8069   # cap 8479  +crp 9589  abscabs 10939  ∞Metcxmet 12620  ballcbl 12622  MetOpencmopn 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-bases 12681
This theorem is referenced by:  dvrecap  13317
  Copyright terms: Public domain W3C validator