Step | Hyp | Ref
| Expression |
1 | | ssrab2 3242 |
. . 3
β’ {π€ β β β£ π€ # π΄} β β |
2 | 1 | a1i 9 |
. 2
β’ (π΄ β β β {π€ β β β£ π€ # π΄} β β) |
3 | | breq1 4008 |
. . . . . . . . . 10
β’ (π€ = π₯ β (π€ # π΄ β π₯ # π΄)) |
4 | 3 | elrab 2895 |
. . . . . . . . 9
β’ (π₯ β {π€ β β β£ π€ # π΄} β (π₯ β β β§ π₯ # π΄)) |
5 | 4 | biimpi 120 |
. . . . . . . 8
β’ (π₯ β {π€ β β β£ π€ # π΄} β (π₯ β β β§ π₯ # π΄)) |
6 | 5 | adantl 277 |
. . . . . . 7
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (π₯ β β β§ π₯ # π΄)) |
7 | 6 | simpld 112 |
. . . . . 6
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β π₯ β β) |
8 | | simpl 109 |
. . . . . 6
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β π΄ β β) |
9 | 7, 8 | subcld 8270 |
. . . . 5
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (π₯ β π΄) β β) |
10 | 6 | simprd 114 |
. . . . . 6
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β π₯ # π΄) |
11 | 7, 8, 10 | subap0d 8603 |
. . . . 5
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (π₯ β π΄) # 0) |
12 | 9, 11 | absrpclapd 11199 |
. . . 4
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (absβ(π₯ β π΄)) β
β+) |
13 | | breq1 4008 |
. . . . . . 7
β’ (π€ = π§ β (π€ # π΄ β π§ # π΄)) |
14 | | cnxmet 14070 |
. . . . . . . . . 10
β’ (abs
β β ) β (βMetββ) |
15 | 9 | abscld 11192 |
. . . . . . . . . . 11
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (absβ(π₯ β π΄)) β β) |
16 | 15 | rexrd 8009 |
. . . . . . . . . 10
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (absβ(π₯ β π΄)) β
β*) |
17 | | elbl 13930 |
. . . . . . . . . 10
β’ (((abs
β β ) β (βMetββ) β§ π₯ β β β§ (absβ(π₯ β π΄)) β β*) β (π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄))) β (π§ β β β§ (π₯(abs β β )π§) < (absβ(π₯ β π΄))))) |
18 | 14, 7, 16, 17 | mp3an2i 1342 |
. . . . . . . . 9
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄))) β (π§ β β β§ (π₯(abs β β )π§) < (absβ(π₯ β π΄))))) |
19 | 18 | biimpa 296 |
. . . . . . . 8
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β (π§ β β β§ (π₯(abs β β )π§) < (absβ(π₯ β π΄)))) |
20 | 19 | simpld 112 |
. . . . . . 7
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β π§ β
β) |
21 | 8 | adantr 276 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β π΄ β
β) |
22 | 20, 21 | subcld 8270 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β (π§ β π΄) β β) |
23 | 22 | abscld 11192 |
. . . . . . . . . 10
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
(absβ(π§ β π΄)) β
β) |
24 | 7 | adantr 276 |
. . . . . . . . . . . . . 14
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β π₯ β
β) |
25 | 24, 20 | subcld 8270 |
. . . . . . . . . . . . 13
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β (π₯ β π§) β β) |
26 | 25 | abscld 11192 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
(absβ(π₯ β π§)) β
β) |
27 | 15 | adantr 276 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
(absβ(π₯ β π΄)) β
β) |
28 | 26, 23 | readdcld 7989 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
((absβ(π₯ β
π§)) + (absβ(π§ β π΄))) β β) |
29 | | eqid 2177 |
. . . . . . . . . . . . . . 15
β’ (abs
β β ) = (abs β β ) |
30 | 29 | cnmetdval 14068 |
. . . . . . . . . . . . . 14
β’ ((π₯ β β β§ π§ β β) β (π₯(abs β β )π§) = (absβ(π₯ β π§))) |
31 | 24, 20, 30 | syl2anc 411 |
. . . . . . . . . . . . 13
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β (π₯(abs β β )π§) = (absβ(π₯ β π§))) |
32 | 19 | simprd 114 |
. . . . . . . . . . . . 13
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β (π₯(abs β β )π§) < (absβ(π₯ β π΄))) |
33 | 31, 32 | eqbrtrrd 4029 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
(absβ(π₯ β π§)) < (absβ(π₯ β π΄))) |
34 | 24, 21, 20 | abs3difd 11211 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
(absβ(π₯ β π΄)) β€ ((absβ(π₯ β π§)) + (absβ(π§ β π΄)))) |
35 | 26, 27, 28, 33, 34 | ltletrd 8382 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
(absβ(π₯ β π§)) < ((absβ(π₯ β π§)) + (absβ(π§ β π΄)))) |
36 | 23, 26 | ltaddposd 8488 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β (0 <
(absβ(π§ β π΄)) β (absβ(π₯ β π§)) < ((absβ(π₯ β π§)) + (absβ(π§ β π΄))))) |
37 | 35, 36 | mpbird 167 |
. . . . . . . . . 10
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β 0 <
(absβ(π§ β π΄))) |
38 | 23, 37 | gt0ap0d 8588 |
. . . . . . . . 9
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
(absβ(π§ β π΄)) # 0) |
39 | | abs00ap 11073 |
. . . . . . . . . 10
β’ ((π§ β π΄) β β β ((absβ(π§ β π΄)) # 0 β (π§ β π΄) # 0)) |
40 | 22, 39 | syl 14 |
. . . . . . . . 9
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β
((absβ(π§ β
π΄)) # 0 β (π§ β π΄) # 0)) |
41 | 38, 40 | mpbid 147 |
. . . . . . . 8
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β (π§ β π΄) # 0) |
42 | | subap0 8602 |
. . . . . . . . 9
β’ ((π§ β β β§ π΄ β β) β ((π§ β π΄) # 0 β π§ # π΄)) |
43 | 20, 21, 42 | syl2anc 411 |
. . . . . . . 8
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β ((π§ β π΄) # 0 β π§ # π΄)) |
44 | 41, 43 | mpbid 147 |
. . . . . . 7
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β π§ # π΄) |
45 | 13, 20, 44 | elrabd 2897 |
. . . . . 6
β’ (((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β§ π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) β π§ β {π€ β β β£ π€ # π΄}) |
46 | 45 | ex 115 |
. . . . 5
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (π§ β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄))) β π§ β {π€ β β β£ π€ # π΄})) |
47 | 46 | ssrdv 3163 |
. . . 4
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄))) β {π€ β β β£ π€ # π΄}) |
48 | | oveq2 5885 |
. . . . . 6
β’ (π = (absβ(π₯ β π΄)) β (π₯(ballβ(abs β β ))π) = (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄)))) |
49 | 48 | sseq1d 3186 |
. . . . 5
β’ (π = (absβ(π₯ β π΄)) β ((π₯(ballβ(abs β β ))π) β {π€ β β β£ π€ # π΄} β (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄))) β {π€ β β β£ π€ # π΄})) |
50 | 49 | rspcev 2843 |
. . . 4
β’
(((absβ(π₯
β π΄)) β
β+ β§ (π₯(ballβ(abs β β
))(absβ(π₯ β
π΄))) β {π€ β β β£ π€ # π΄}) β βπ β β+ (π₯(ballβ(abs β β
))π) β {π€ β β β£ π€ # π΄}) |
51 | 12, 47, 50 | syl2anc 411 |
. . 3
β’ ((π΄ β β β§ π₯ β {π€ β β β£ π€ # π΄}) β βπ β β+ (π₯(ballβ(abs β β
))π) β {π€ β β β£ π€ # π΄}) |
52 | 51 | ralrimiva 2550 |
. 2
β’ (π΄ β β β
βπ₯ β {π€ β β β£ π€ # π΄}βπ β β+ (π₯(ballβ(abs β β
))π) β {π€ β β β£ π€ # π΄}) |
53 | | eqid 2177 |
. . . 4
β’
(MetOpenβ(abs β β )) = (MetOpenβ(abs β
β )) |
54 | 53 | elmopn2 13988 |
. . 3
β’ ((abs
β β ) β (βMetββ) β ({π€ β β β£ π€ # π΄} β (MetOpenβ(abs β β
)) β ({π€ β
β β£ π€ # π΄} β β β§
βπ₯ β {π€ β β β£ π€ # π΄}βπ β β+ (π₯(ballβ(abs β β
))π) β {π€ β β β£ π€ # π΄}))) |
55 | 14, 54 | ax-mp 5 |
. 2
β’ ({π€ β β β£ π€ # π΄} β (MetOpenβ(abs β β
)) β ({π€ β
β β£ π€ # π΄} β β β§
βπ₯ β {π€ β β β£ π€ # π΄}βπ β β+ (π₯(ballβ(abs β β
))π) β {π€ β β β£ π€ # π΄})) |
56 | 2, 52, 55 | sylanbrc 417 |
1
β’ (π΄ β β β {π€ β β β£ π€ # π΄} β (MetOpenβ(abs β β
))) |