ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap GIF version

Theorem cnopnap 15285
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Distinct variable group:   𝑤,𝐴

Proof of Theorem cnopnap
Dummy variables 𝑟 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3309 . . 3 {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ
21a1i 9 . 2 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ)
3 breq1 4086 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 # 𝐴𝑥 # 𝐴))
43elrab 2959 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
54biimpi 120 . . . . . . . 8 (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
65adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥 ∈ ℂ ∧ 𝑥 # 𝐴))
76simpld 112 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 ∈ ℂ)
8 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝐴 ∈ ℂ)
97, 8subcld 8457 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) ∈ ℂ)
106simprd 114 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → 𝑥 # 𝐴)
117, 8, 10subap0d 8791 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥𝐴) # 0)
129, 11absrpclapd 11699 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ+)
13 breq1 4086 . . . . . . 7 (𝑤 = 𝑧 → (𝑤 # 𝐴𝑧 # 𝐴))
14 cnxmet 15205 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
159abscld 11692 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ)
1615rexrd 8196 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (abs‘(𝑥𝐴)) ∈ ℝ*)
17 elbl 15065 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ (abs‘(𝑥𝐴)) ∈ ℝ*) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1814, 7, 16, 17mp3an2i 1376 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ↔ (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))))
1918biimpa 296 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧 ∈ ℂ ∧ (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴))))
2019simpld 112 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ ℂ)
218adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝐴 ∈ ℂ)
2220, 21subcld 8457 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) ∈ ℂ)
2322abscld 11692 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) ∈ ℝ)
247adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑥 ∈ ℂ)
2524, 20subcld 8457 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥𝑧) ∈ ℂ)
2625abscld 11692 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) ∈ ℝ)
2715adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ∈ ℝ)
2826, 23readdcld 8176 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))) ∈ ℝ)
29 eqid 2229 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 15203 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3124, 20, 30syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
3219simprd 114 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑥(abs ∘ − )𝑧) < (abs‘(𝑥𝐴)))
3331, 32eqbrtrrd 4107 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < (abs‘(𝑥𝐴)))
3424, 21, 20abs3difd 11711 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝐴)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3526, 27, 28, 33, 34ltletrd 8570 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴))))
3623, 26ltaddposd 8676 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (0 < (abs‘(𝑧𝐴)) ↔ (abs‘(𝑥𝑧)) < ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝐴)))))
3735, 36mpbird 167 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 0 < (abs‘(𝑧𝐴)))
3823, 37gt0ap0d 8776 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (abs‘(𝑧𝐴)) # 0)
39 abs00ap 11573 . . . . . . . . . 10 ((𝑧𝐴) ∈ ℂ → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4022, 39syl 14 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((abs‘(𝑧𝐴)) # 0 ↔ (𝑧𝐴) # 0))
4138, 40mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → (𝑧𝐴) # 0)
42 subap0 8790 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4320, 21, 42syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → ((𝑧𝐴) # 0 ↔ 𝑧 # 𝐴))
4441, 43mpbid 147 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 # 𝐴)
4513, 20, 44elrabd 2961 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) ∧ 𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴)))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
4645ex 115 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑧 ∈ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
4746ssrdv 3230 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
48 oveq2 6009 . . . . . 6 (𝑟 = (abs‘(𝑥𝐴)) → (𝑥(ball‘(abs ∘ − ))𝑟) = (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))))
4948sseq1d 3253 . . . . 5 (𝑟 = (abs‘(𝑥𝐴)) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ↔ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
5049rspcev 2907 . . . 4 (((abs‘(𝑥𝐴)) ∈ ℝ+ ∧ (𝑥(ball‘(abs ∘ − ))(abs‘(𝑥𝐴))) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5112, 47, 50syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
5251ralrimiva 2603 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})
53 eqid 2229 . . . 4 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5453elmopn2 15123 . . 3 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴})))
5514, 54ax-mp 5 . 2 ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )) ↔ ({𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ⊆ ℂ ∧ ∀𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}∃𝑟 ∈ ℝ+ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴}))
562, 52, 55sylanbrc 417 1 (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197   class class class wbr 4083  ccom 4723  cfv 5318  (class class class)co 6001  cc 7997  cr 7998  0cc0 7999   + caddc 8002  *cxr 8180   < clt 8181  cmin 8317   # cap 8728  +crp 9849  abscabs 11508  ∞Metcxmet 14500  ballcbl 14502  MetOpencmopn 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-bases 14717
This theorem is referenced by:  dvrecap  15387
  Copyright terms: Public domain W3C validator