ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnopnap GIF version

Theorem cnopnap 14133
Description: The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnopnap (𝐴 ∈ β„‚ β†’ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} ∈ (MetOpenβ€˜(abs ∘ βˆ’ )))
Distinct variable group:   𝑀,𝐴

Proof of Theorem cnopnap
Dummy variables π‘Ÿ π‘₯ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3242 . . 3 {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} βŠ† β„‚
21a1i 9 . 2 (𝐴 ∈ β„‚ β†’ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} βŠ† β„‚)
3 breq1 4008 . . . . . . . . . 10 (𝑀 = π‘₯ β†’ (𝑀 # 𝐴 ↔ π‘₯ # 𝐴))
43elrab 2895 . . . . . . . . 9 (π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} ↔ (π‘₯ ∈ β„‚ ∧ π‘₯ # 𝐴))
54biimpi 120 . . . . . . . 8 (π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} β†’ (π‘₯ ∈ β„‚ ∧ π‘₯ # 𝐴))
65adantl 277 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (π‘₯ ∈ β„‚ ∧ π‘₯ # 𝐴))
76simpld 112 . . . . . 6 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ π‘₯ ∈ β„‚)
8 simpl 109 . . . . . 6 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ 𝐴 ∈ β„‚)
97, 8subcld 8270 . . . . 5 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (π‘₯ βˆ’ 𝐴) ∈ β„‚)
106simprd 114 . . . . . 6 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ π‘₯ # 𝐴)
117, 8, 10subap0d 8603 . . . . 5 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (π‘₯ βˆ’ 𝐴) # 0)
129, 11absrpclapd 11199 . . . 4 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (absβ€˜(π‘₯ βˆ’ 𝐴)) ∈ ℝ+)
13 breq1 4008 . . . . . . 7 (𝑀 = 𝑧 β†’ (𝑀 # 𝐴 ↔ 𝑧 # 𝐴))
14 cnxmet 14070 . . . . . . . . . 10 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
159abscld 11192 . . . . . . . . . . 11 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (absβ€˜(π‘₯ βˆ’ 𝐴)) ∈ ℝ)
1615rexrd 8009 . . . . . . . . . 10 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (absβ€˜(π‘₯ βˆ’ 𝐴)) ∈ ℝ*)
17 elbl 13930 . . . . . . . . . 10 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘₯ ∈ β„‚ ∧ (absβ€˜(π‘₯ βˆ’ 𝐴)) ∈ ℝ*) β†’ (𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴))) ↔ (𝑧 ∈ β„‚ ∧ (π‘₯(abs ∘ βˆ’ )𝑧) < (absβ€˜(π‘₯ βˆ’ 𝐴)))))
1814, 7, 16, 17mp3an2i 1342 . . . . . . . . 9 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴))) ↔ (𝑧 ∈ β„‚ ∧ (π‘₯(abs ∘ βˆ’ )𝑧) < (absβ€˜(π‘₯ βˆ’ 𝐴)))))
1918biimpa 296 . . . . . . . 8 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (𝑧 ∈ β„‚ ∧ (π‘₯(abs ∘ βˆ’ )𝑧) < (absβ€˜(π‘₯ βˆ’ 𝐴))))
2019simpld 112 . . . . . . 7 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ 𝑧 ∈ β„‚)
218adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ 𝐴 ∈ β„‚)
2220, 21subcld 8270 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (𝑧 βˆ’ 𝐴) ∈ β„‚)
2322abscld 11192 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (absβ€˜(𝑧 βˆ’ 𝐴)) ∈ ℝ)
247adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ π‘₯ ∈ β„‚)
2524, 20subcld 8270 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (π‘₯ βˆ’ 𝑧) ∈ β„‚)
2625abscld 11192 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (absβ€˜(π‘₯ βˆ’ 𝑧)) ∈ ℝ)
2715adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (absβ€˜(π‘₯ βˆ’ 𝐴)) ∈ ℝ)
2826, 23readdcld 7989 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ ((absβ€˜(π‘₯ βˆ’ 𝑧)) + (absβ€˜(𝑧 βˆ’ 𝐴))) ∈ ℝ)
29 eqid 2177 . . . . . . . . . . . . . . 15 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
3029cnmetdval 14068 . . . . . . . . . . . . . 14 ((π‘₯ ∈ β„‚ ∧ 𝑧 ∈ β„‚) β†’ (π‘₯(abs ∘ βˆ’ )𝑧) = (absβ€˜(π‘₯ βˆ’ 𝑧)))
3124, 20, 30syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (π‘₯(abs ∘ βˆ’ )𝑧) = (absβ€˜(π‘₯ βˆ’ 𝑧)))
3219simprd 114 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (π‘₯(abs ∘ βˆ’ )𝑧) < (absβ€˜(π‘₯ βˆ’ 𝐴)))
3331, 32eqbrtrrd 4029 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (absβ€˜(π‘₯ βˆ’ 𝑧)) < (absβ€˜(π‘₯ βˆ’ 𝐴)))
3424, 21, 20abs3difd 11211 . . . . . . . . . . . 12 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (absβ€˜(π‘₯ βˆ’ 𝐴)) ≀ ((absβ€˜(π‘₯ βˆ’ 𝑧)) + (absβ€˜(𝑧 βˆ’ 𝐴))))
3526, 27, 28, 33, 34ltletrd 8382 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (absβ€˜(π‘₯ βˆ’ 𝑧)) < ((absβ€˜(π‘₯ βˆ’ 𝑧)) + (absβ€˜(𝑧 βˆ’ 𝐴))))
3623, 26ltaddposd 8488 . . . . . . . . . . 11 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (0 < (absβ€˜(𝑧 βˆ’ 𝐴)) ↔ (absβ€˜(π‘₯ βˆ’ 𝑧)) < ((absβ€˜(π‘₯ βˆ’ 𝑧)) + (absβ€˜(𝑧 βˆ’ 𝐴)))))
3735, 36mpbird 167 . . . . . . . . . 10 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ 0 < (absβ€˜(𝑧 βˆ’ 𝐴)))
3823, 37gt0ap0d 8588 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (absβ€˜(𝑧 βˆ’ 𝐴)) # 0)
39 abs00ap 11073 . . . . . . . . . 10 ((𝑧 βˆ’ 𝐴) ∈ β„‚ β†’ ((absβ€˜(𝑧 βˆ’ 𝐴)) # 0 ↔ (𝑧 βˆ’ 𝐴) # 0))
4022, 39syl 14 . . . . . . . . 9 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ ((absβ€˜(𝑧 βˆ’ 𝐴)) # 0 ↔ (𝑧 βˆ’ 𝐴) # 0))
4138, 40mpbid 147 . . . . . . . 8 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ (𝑧 βˆ’ 𝐴) # 0)
42 subap0 8602 . . . . . . . . 9 ((𝑧 ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ ((𝑧 βˆ’ 𝐴) # 0 ↔ 𝑧 # 𝐴))
4320, 21, 42syl2anc 411 . . . . . . . 8 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ ((𝑧 βˆ’ 𝐴) # 0 ↔ 𝑧 # 𝐴))
4441, 43mpbid 147 . . . . . . 7 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ 𝑧 # 𝐴)
4513, 20, 44elrabd 2897 . . . . . 6 (((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) ∧ 𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴)))) β†’ 𝑧 ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴})
4645ex 115 . . . . 5 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (𝑧 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴))) β†’ 𝑧 ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}))
4746ssrdv 3163 . . . 4 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴))) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴})
48 oveq2 5885 . . . . . 6 (π‘Ÿ = (absβ€˜(π‘₯ βˆ’ 𝐴)) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴))))
4948sseq1d 3186 . . . . 5 (π‘Ÿ = (absβ€˜(π‘₯ βˆ’ 𝐴)) β†’ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} ↔ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴))) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}))
5049rspcev 2843 . . . 4 (((absβ€˜(π‘₯ βˆ’ 𝐴)) ∈ ℝ+ ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))(absβ€˜(π‘₯ βˆ’ 𝐴))) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴})
5112, 47, 50syl2anc 411 . . 3 ((𝐴 ∈ β„‚ ∧ π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴})
5251ralrimiva 2550 . 2 (𝐴 ∈ β„‚ β†’ βˆ€π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴})
53 eqid 2177 . . . 4 (MetOpenβ€˜(abs ∘ βˆ’ )) = (MetOpenβ€˜(abs ∘ βˆ’ ))
5453elmopn2 13988 . . 3 ((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) β†’ ({𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} ∈ (MetOpenβ€˜(abs ∘ βˆ’ )) ↔ ({𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} βŠ† β„‚ ∧ βˆ€π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴})))
5514, 54ax-mp 5 . 2 ({𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} ∈ (MetOpenβ€˜(abs ∘ βˆ’ )) ↔ ({𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} βŠ† β„‚ ∧ βˆ€π‘₯ ∈ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴}))
562, 52, 55sylanbrc 417 1 (𝐴 ∈ β„‚ β†’ {𝑀 ∈ β„‚ ∣ 𝑀 # 𝐴} ∈ (MetOpenβ€˜(abs ∘ βˆ’ )))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  {crab 2459   βŠ† wss 3131   class class class wbr 4005   ∘ ccom 4632  β€˜cfv 5218  (class class class)co 5877  β„‚cc 7811  β„cr 7812  0cc0 7813   + caddc 7816  β„*cxr 7993   < clt 7994   βˆ’ cmin 8130   # cap 8540  β„+crp 9655  abscabs 11008  βˆžMetcxmet 13479  ballcbl 13481  MetOpencmopn 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-met 13488  df-bl 13489  df-mopn 13490  df-top 13537  df-bases 13582
This theorem is referenced by:  dvrecap  14216
  Copyright terms: Public domain W3C validator