Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0letri | GIF version |
Description: Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.) |
Ref | Expression |
---|---|
xnn0letri | ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0zd 9332 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
3 | simplr 525 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0) | |
4 | 3 | nn0zd 9332 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ) |
5 | zletric 9256 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
6 | 2, 4, 5 | syl2anc 409 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
7 | xnn0xr 9203 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ∈ ℝ*) | |
8 | pnfge 9746 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ≤ +∞) |
10 | 9 | ad3antlr 490 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞) |
11 | simpr 109 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞) | |
12 | 10, 11 | breqtrrd 4017 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ 𝐴) |
13 | 12 | olcd 729 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
14 | elxnn0 9200 | . . . . 5 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
15 | 14 | biimpi 119 | . . . 4 ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
16 | 15 | ad2antrr 485 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
17 | 6, 13, 16 | mpjaodan 793 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
18 | xnn0xr 9203 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | |
19 | 18 | ad2antrr 485 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*) |
20 | pnfge 9746 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
21 | 19, 20 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞) |
22 | simpr 109 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
23 | 21, 22 | breqtrrd 4017 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ 𝐵) |
24 | 23 | orcd 728 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
25 | elxnn0 9200 | . . . 4 ⊢ (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) | |
26 | 25 | biimpi 119 | . . 3 ⊢ (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
27 | 26 | adantl 275 | . 2 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
28 | 17, 24, 27 | mpjaodan 793 | 1 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 +∞cpnf 7951 ℝ*cxr 7953 ≤ cle 7955 ℕ0cn0 9135 ℕ0*cxnn0 9198 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-xnn0 9199 df-z 9213 |
This theorem is referenced by: pcgcd 12282 |
Copyright terms: Public domain | W3C validator |