![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnn0letri | GIF version |
Description: Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.) |
Ref | Expression |
---|---|
xnn0letri | ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0zd 9375 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
3 | simplr 528 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0) | |
4 | 3 | nn0zd 9375 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ) |
5 | zletric 9299 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
6 | 2, 4, 5 | syl2anc 411 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
7 | xnn0xr 9246 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ∈ ℝ*) | |
8 | pnfge 9791 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ≤ +∞) |
10 | 9 | ad3antlr 493 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞) |
11 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞) | |
12 | 10, 11 | breqtrrd 4033 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ 𝐴) |
13 | 12 | olcd 734 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
14 | elxnn0 9243 | . . . . 5 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
15 | 14 | biimpi 120 | . . . 4 ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
16 | 15 | ad2antrr 488 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
17 | 6, 13, 16 | mpjaodan 798 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
18 | xnn0xr 9246 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | |
19 | 18 | ad2antrr 488 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*) |
20 | pnfge 9791 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
21 | 19, 20 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞) |
22 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
23 | 21, 22 | breqtrrd 4033 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ 𝐵) |
24 | 23 | orcd 733 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
25 | elxnn0 9243 | . . . 4 ⊢ (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) | |
26 | 25 | biimpi 120 | . . 3 ⊢ (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
27 | 26 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
28 | 17, 24, 27 | mpjaodan 798 | 1 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 +∞cpnf 7991 ℝ*cxr 7993 ≤ cle 7995 ℕ0cn0 9178 ℕ0*cxnn0 9241 ℤcz 9255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-xnn0 9242 df-z 9256 |
This theorem is referenced by: pcgcd 12330 |
Copyright terms: Public domain | W3C validator |