![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnn0letri | GIF version |
Description: Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.) |
Ref | Expression |
---|---|
xnn0letri | ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0zd 9437 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
3 | simplr 528 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0) | |
4 | 3 | nn0zd 9437 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ) |
5 | zletric 9361 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
6 | 2, 4, 5 | syl2anc 411 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
7 | xnn0xr 9308 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ∈ ℝ*) | |
8 | pnfge 9855 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ≤ +∞) |
10 | 9 | ad3antlr 493 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞) |
11 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞) | |
12 | 10, 11 | breqtrrd 4057 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ 𝐴) |
13 | 12 | olcd 735 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
14 | elxnn0 9305 | . . . . 5 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
15 | 14 | biimpi 120 | . . . 4 ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
16 | 15 | ad2antrr 488 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
17 | 6, 13, 16 | mpjaodan 799 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
18 | xnn0xr 9308 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | |
19 | 18 | ad2antrr 488 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*) |
20 | pnfge 9855 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
21 | 19, 20 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞) |
22 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
23 | 21, 22 | breqtrrd 4057 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ 𝐵) |
24 | 23 | orcd 734 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
25 | elxnn0 9305 | . . . 4 ⊢ (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) | |
26 | 25 | biimpi 120 | . . 3 ⊢ (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
27 | 26 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
28 | 17, 24, 27 | mpjaodan 799 | 1 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 +∞cpnf 8051 ℝ*cxr 8053 ≤ cle 8055 ℕ0cn0 9240 ℕ0*cxnn0 9303 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-xnn0 9304 df-z 9318 |
This theorem is referenced by: pcgcd 12467 |
Copyright terms: Public domain | W3C validator |