| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0letri | GIF version | ||
| Description: Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| xnn0letri | ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
| 2 | 1 | nn0zd 9492 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
| 3 | simplr 528 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℕ0) | |
| 4 | 3 | nn0zd 9492 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → 𝐵 ∈ ℤ) |
| 5 | zletric 9415 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
| 6 | 2, 4, 5 | syl2anc 411 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 7 | xnn0xr 9362 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ∈ ℝ*) | |
| 8 | pnfge 9910 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
| 9 | 7, 8 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0* → 𝐵 ≤ +∞) |
| 10 | 9 | ad3antlr 493 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞) |
| 11 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐴 = +∞) | |
| 12 | 10, 11 | breqtrrd 4071 | . . . 4 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → 𝐵 ≤ 𝐴) |
| 13 | 12 | olcd 735 | . . 3 ⊢ ((((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 14 | elxnn0 9359 | . . . . 5 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 15 | 14 | biimpi 120 | . . . 4 ⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 16 | 15 | ad2antrr 488 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 17 | 6, 13, 16 | mpjaodan 799 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 ∈ ℕ0) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 18 | xnn0xr 9362 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | |
| 19 | 18 | ad2antrr 488 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*) |
| 20 | pnfge 9910 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 21 | 19, 20 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞) |
| 22 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
| 23 | 21, 22 | breqtrrd 4071 | . . 3 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → 𝐴 ≤ 𝐵) |
| 24 | 23 | orcd 734 | . 2 ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ 𝐵 = +∞) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| 25 | elxnn0 9359 | . . . 4 ⊢ (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) | |
| 26 | 25 | biimpi 120 | . . 3 ⊢ (𝐵 ∈ ℕ0* → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
| 27 | 26 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
| 28 | 17, 24, 27 | mpjaodan 799 | 1 ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 +∞cpnf 8103 ℝ*cxr 8105 ≤ cle 8107 ℕ0cn0 9294 ℕ0*cxnn0 9357 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-xnn0 9358 df-z 9372 |
| This theorem is referenced by: pcgcd 12594 |
| Copyright terms: Public domain | W3C validator |