ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjudisj GIF version

Theorem endjudisj 7321
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
endjudisj ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem endjudisj
StepHypRef Expression
1 djuun 7168 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
2 eninl 7198 . . . 4 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
323ad2ant1 1020 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inl “ 𝐴) ≈ 𝐴)
4 eninr 7199 . . . 4 (𝐵𝑊 → (inr “ 𝐵) ≈ 𝐵)
543ad2ant2 1021 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inr “ 𝐵) ≈ 𝐵)
6 djuin 7165 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
76a1i 9 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅)
8 simp3 1001 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
9 unen 6907 . . 3 ((((inl “ 𝐴) ≈ 𝐴 ∧ (inr “ 𝐵) ≈ 𝐵) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
103, 5, 7, 8, 9syl22anc 1250 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
111, 10eqbrtrrid 4079 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  cun 3163  cin 3164  c0 3459   class class class wbr 4043  cima 4677  cen 6824  cdju 7138  inlcinl 7146  inrcinr 7147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226  df-1o 6501  df-er 6619  df-en 6827  df-dju 7139  df-inl 7148  df-inr 7149
This theorem is referenced by:  djuenun  7323  dju0en  7325  exmidunben  12739
  Copyright terms: Public domain W3C validator