ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjudisj GIF version

Theorem endjudisj 7388
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
endjudisj ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem endjudisj
StepHypRef Expression
1 djuun 7230 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
2 eninl 7260 . . . 4 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
323ad2ant1 1042 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inl “ 𝐴) ≈ 𝐴)
4 eninr 7261 . . . 4 (𝐵𝑊 → (inr “ 𝐵) ≈ 𝐵)
543ad2ant2 1043 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inr “ 𝐵) ≈ 𝐵)
6 djuin 7227 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
76a1i 9 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅)
8 simp3 1023 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
9 unen 6967 . . 3 ((((inl “ 𝐴) ≈ 𝐴 ∧ (inr “ 𝐵) ≈ 𝐵) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
103, 5, 7, 8, 9syl22anc 1272 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
111, 10eqbrtrrid 4118 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  cun 3195  cin 3196  c0 3491   class class class wbr 4082  cima 4721  cen 6883  cdju 7200  inlcinl 7208  inrcinr 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-er 6678  df-en 6886  df-dju 7201  df-inl 7210  df-inr 7211
This theorem is referenced by:  djuenun  7390  dju0en  7392  exmidunben  12992
  Copyright terms: Public domain W3C validator