Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjudisj GIF version

Theorem endjudisj 7086
 Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
endjudisj ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem endjudisj
StepHypRef Expression
1 djuun 6962 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
2 eninl 6992 . . . 4 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
323ad2ant1 1003 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inl “ 𝐴) ≈ 𝐴)
4 eninr 6993 . . . 4 (𝐵𝑊 → (inr “ 𝐵) ≈ 𝐵)
543ad2ant2 1004 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inr “ 𝐵) ≈ 𝐵)
6 djuin 6959 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
76a1i 9 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅)
8 simp3 984 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
9 unen 6719 . . 3 ((((inl “ 𝐴) ≈ 𝐴 ∧ (inr “ 𝐵) ≈ 𝐵) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
103, 5, 7, 8, 9syl22anc 1218 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
111, 10eqbrtrrid 3973 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   ∪ cun 3075   ∩ cin 3076  ∅c0 3369   class class class wbr 3938   “ cima 4551   ≈ cen 6641   ⊔ cdju 6932  inlcinl 6940  inrcinr 6941 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-iord 4297  df-on 4299  df-suc 4302  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-1st 6047  df-2nd 6048  df-1o 6322  df-er 6438  df-en 6644  df-dju 6933  df-inl 6942  df-inr 6943 This theorem is referenced by:  djuenun  7088  dju0en  7090  exmidunben  11995
 Copyright terms: Public domain W3C validator