![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > endjudisj | GIF version |
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
Ref | Expression |
---|---|
endjudisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuun 6902 | . 2 ⊢ ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴 ⊔ 𝐵) | |
2 | eninl 6932 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) | |
3 | 2 | 3ad2ant1 983 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (inl “ 𝐴) ≈ 𝐴) |
4 | eninr 6933 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (inr “ 𝐵) ≈ 𝐵) | |
5 | 4 | 3ad2ant2 984 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (inr “ 𝐵) ≈ 𝐵) |
6 | djuin 6899 | . . . 4 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ | |
7 | 6 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅) |
8 | simp3 964 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
9 | unen 6662 | . . 3 ⊢ ((((inl “ 𝐴) ≈ 𝐴 ∧ (inr “ 𝐵) ≈ 𝐵) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
10 | 3, 5, 7, 8, 9 | syl22anc 1198 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
11 | 1, 10 | eqbrtrrid 3927 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 943 = wceq 1312 ∈ wcel 1461 ∪ cun 3033 ∩ cin 3034 ∅c0 3327 class class class wbr 3893 “ cima 4500 ≈ cen 6584 ⊔ cdju 6872 inlcinl 6880 inrcinr 6881 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-1st 5990 df-2nd 5991 df-1o 6265 df-er 6381 df-en 6587 df-dju 6873 df-inl 6882 df-inr 6883 |
This theorem is referenced by: djuenun 7013 dju0en 7015 exmidunben 11778 |
Copyright terms: Public domain | W3C validator |