| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endjudisj | GIF version | ||
| Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| endjudisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuun 7168 | . 2 ⊢ ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴 ⊔ 𝐵) | |
| 2 | eninl 7198 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) | |
| 3 | 2 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (inl “ 𝐴) ≈ 𝐴) |
| 4 | eninr 7199 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (inr “ 𝐵) ≈ 𝐵) | |
| 5 | 4 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (inr “ 𝐵) ≈ 𝐵) |
| 6 | djuin 7165 | . . . 4 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ | |
| 7 | 6 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅) |
| 8 | simp3 1001 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
| 9 | unen 6907 | . . 3 ⊢ ((((inl “ 𝐴) ≈ 𝐴 ∧ (inr “ 𝐵) ≈ 𝐵) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
| 10 | 3, 5, 7, 8, 9 | syl22anc 1250 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
| 11 | 1, 10 | eqbrtrrid 4079 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ∪ cun 3163 ∩ cin 3164 ∅c0 3459 class class class wbr 4043 “ cima 4677 ≈ cen 6824 ⊔ cdju 7138 inlcinl 7146 inrcinr 7147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-er 6619 df-en 6827 df-dju 7139 df-inl 7148 df-inr 7149 |
| This theorem is referenced by: djuenun 7323 dju0en 7325 exmidunben 12739 |
| Copyright terms: Public domain | W3C validator |