ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjudisj GIF version

Theorem endjudisj 7270
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
endjudisj ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem endjudisj
StepHypRef Expression
1 djuun 7126 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
2 eninl 7156 . . . 4 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
323ad2ant1 1020 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inl “ 𝐴) ≈ 𝐴)
4 eninr 7157 . . . 4 (𝐵𝑊 → (inr “ 𝐵) ≈ 𝐵)
543ad2ant2 1021 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (inr “ 𝐵) ≈ 𝐵)
6 djuin 7123 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
76a1i 9 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅)
8 simp3 1001 . . 3 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
9 unen 6870 . . 3 ((((inl “ 𝐴) ≈ 𝐴 ∧ (inr “ 𝐵) ≈ 𝐵) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
103, 5, 7, 8, 9syl22anc 1250 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴𝐵))
111, 10eqbrtrrid 4065 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  cun 3151  cin 3152  c0 3446   class class class wbr 4029  cima 4662  cen 6792  cdju 7096  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-er 6587  df-en 6795  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  djuenun  7272  dju0en  7274  exmidunben  12583
  Copyright terms: Public domain W3C validator