![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > endjudisj | GIF version |
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.) |
Ref | Expression |
---|---|
endjudisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuun 7126 | . 2 ⊢ ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴 ⊔ 𝐵) | |
2 | eninl 7156 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) | |
3 | 2 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (inl “ 𝐴) ≈ 𝐴) |
4 | eninr 7157 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (inr “ 𝐵) ≈ 𝐵) | |
5 | 4 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (inr “ 𝐵) ≈ 𝐵) |
6 | djuin 7123 | . . . 4 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ | |
7 | 6 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅) |
8 | simp3 1001 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
9 | unen 6870 | . . 3 ⊢ ((((inl “ 𝐴) ≈ 𝐴 ∧ (inr “ 𝐵) ≈ 𝐵) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
10 | 3, 5, 7, 8, 9 | syl22anc 1250 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
11 | 1, 10 | eqbrtrrid 4065 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 ∩ cin 3152 ∅c0 3446 class class class wbr 4029 “ cima 4662 ≈ cen 6792 ⊔ cdju 7096 inlcinl 7104 inrcinr 7105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1st 6193 df-2nd 6194 df-1o 6469 df-er 6587 df-en 6795 df-dju 7097 df-inl 7106 df-inr 7107 |
This theorem is referenced by: djuenun 7272 dju0en 7274 exmidunben 12583 |
Copyright terms: Public domain | W3C validator |