Proof of Theorem ncoprmgcdne1b
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-2 9049 | 
. . . . . . 7
⊢ 2 = (1 +
1) | 
| 2 |   | 2re 9060 | 
. . . . . . . . 9
⊢ 2 ∈
ℝ | 
| 3 | 2 | a1i 9 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 2 ∈ ℝ) | 
| 4 |   | eluzelz 9610 | 
. . . . . . . . . 10
⊢ (𝑖 ∈
(ℤ≥‘2) → 𝑖 ∈ ℤ) | 
| 5 | 4 | ad2antlr 489 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℤ) | 
| 6 | 5 | zred 9448 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℝ) | 
| 7 |   | simplll 533 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐴 ∈ ℕ) | 
| 8 |   | simpllr 534 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐵 ∈ ℕ) | 
| 9 |   | gcdnncl 12134 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 10 | 7, 8, 9 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 11 | 10 | nnred 9003 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℝ) | 
| 12 |   | eluzle 9613 | 
. . . . . . . . 9
⊢ (𝑖 ∈
(ℤ≥‘2) → 2 ≤ 𝑖) | 
| 13 | 12 | ad2antlr 489 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 2 ≤ 𝑖) | 
| 14 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | 
| 15 | 7 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐴 ∈ ℤ) | 
| 16 | 8 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐵 ∈ ℤ) | 
| 17 |   | dvdsgcd 12179 | 
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵))) | 
| 18 | 5, 15, 16, 17 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵))) | 
| 19 | 14, 18 | mpd 13 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ (𝐴 gcd 𝐵)) | 
| 20 |   | dvdsle 12009 | 
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) | 
| 21 | 5, 10, 20 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) | 
| 22 | 19, 21 | mpd 13 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ≤ (𝐴 gcd 𝐵)) | 
| 23 | 3, 6, 11, 13, 22 | letrd 8150 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 2 ≤ (𝐴 gcd 𝐵)) | 
| 24 | 1, 23 | eqbrtrrid 4069 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (1 + 1) ≤ (𝐴 gcd 𝐵)) | 
| 25 |   | 1nn 9001 | 
. . . . . . . 8
⊢ 1 ∈
ℕ | 
| 26 | 25 | a1i 9 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 1 ∈ ℕ) | 
| 27 |   | nnltp1le 9386 | 
. . . . . . 7
⊢ ((1
∈ ℕ ∧ (𝐴 gcd
𝐵) ∈ ℕ) →
(1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵))) | 
| 28 | 26, 10, 27 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵))) | 
| 29 | 24, 28 | mpbird 167 | 
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 1 < (𝐴 gcd 𝐵)) | 
| 30 |   | nngt1ne1 9025 | 
. . . . . 6
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) | 
| 31 | 10, 30 | syl 14 | 
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) | 
| 32 | 29, 31 | mpbid 147 | 
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴 gcd 𝐵) ≠ 1) | 
| 33 | 32 | ex 115 | 
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) | 
| 34 | 33 | rexlimdva 2614 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) | 
| 35 | 9 | adantr 276 | 
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 36 |   | simpr 110 | 
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ≠ 1) | 
| 37 |   | eluz2b3 9678 | 
. . . . 5
⊢ ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1)) | 
| 38 | 35, 36, 37 | sylanbrc 417 | 
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈
(ℤ≥‘2)) | 
| 39 |   | simpll 527 | 
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℕ) | 
| 40 | 39 | nnzd 9447 | 
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℤ) | 
| 41 |   | simplr 528 | 
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℕ) | 
| 42 | 41 | nnzd 9447 | 
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℤ) | 
| 43 |   | gcddvds 12130 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 44 | 40, 42, 43 | syl2anc 411 | 
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 45 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴)) | 
| 46 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 47 | 45, 46 | anbi12d 473 | 
. . . . 5
⊢ (𝑖 = (𝐴 gcd 𝐵) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))) | 
| 48 | 47 | rspcev 2868 | 
. . . 4
⊢ (((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | 
| 49 | 38, 44, 48 | syl2anc 411 | 
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) | 
| 50 | 49 | ex 115 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 1 → ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) | 
| 51 | 34, 50 | impbid 129 | 
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |