ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ncoprmgcdne1b GIF version

Theorem ncoprmgcdne1b 12284
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 df-2 9068 . . . . . . 7 2 = (1 + 1)
2 2re 9079 . . . . . . . . 9 2 ∈ ℝ
32a1i 9 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 2 ∈ ℝ)
4 eluzelz 9629 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
54ad2antlr 489 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℤ)
65zred 9467 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℝ)
7 simplll 533 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐴 ∈ ℕ)
8 simpllr 534 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∈ ℕ)
9 gcdnncl 12161 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
107, 8, 9syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ)
1110nnred 9022 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴 gcd 𝐵) ∈ ℝ)
12 eluzle 9632 . . . . . . . . 9 (𝑖 ∈ (ℤ‘2) → 2 ≤ 𝑖)
1312ad2antlr 489 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 2 ≤ 𝑖)
14 simpr 110 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴𝑖𝐵))
157nnzd 9466 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐴 ∈ ℤ)
168nnzd 9466 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∈ ℤ)
17 dvdsgcd 12206 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑖𝐴𝑖𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵)))
185, 15, 16, 17syl3anc 1249 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ((𝑖𝐴𝑖𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵)))
1914, 18mpd 13 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∥ (𝐴 gcd 𝐵))
20 dvdsle 12028 . . . . . . . . . 10 ((𝑖 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
215, 10, 20syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
2219, 21mpd 13 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ≤ (𝐴 gcd 𝐵))
233, 6, 11, 13, 22letrd 8169 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 2 ≤ (𝐴 gcd 𝐵))
241, 23eqbrtrrid 4070 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (1 + 1) ≤ (𝐴 gcd 𝐵))
25 1nn 9020 . . . . . . . 8 1 ∈ ℕ
2625a1i 9 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 1 ∈ ℕ)
27 nnltp1le 9405 . . . . . . 7 ((1 ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵)))
2826, 10, 27syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵)))
2924, 28mpbird 167 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 1 < (𝐴 gcd 𝐵))
30 nngt1ne1 9044 . . . . . 6 ((𝐴 gcd 𝐵) ∈ ℕ → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3110, 30syl 14 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3229, 31mpbid 147 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴 gcd 𝐵) ≠ 1)
3332ex 115 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝑖𝐵) → (𝐴 gcd 𝐵) ≠ 1))
3433rexlimdva 2614 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → (𝐴 gcd 𝐵) ≠ 1))
359adantr 276 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈ ℕ)
36 simpr 110 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ≠ 1)
37 eluz2b3 9697 . . . . 5 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1))
3835, 36, 37sylanbrc 417 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈ (ℤ‘2))
39 simpll 527 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℕ)
4039nnzd 9466 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℤ)
41 simplr 528 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℕ)
4241nnzd 9466 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℤ)
43 gcddvds 12157 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
4440, 42, 43syl2anc 411 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
45 breq1 4037 . . . . . 6 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴))
46 breq1 4037 . . . . . 6 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵))
4745, 46anbi12d 473 . . . . 5 (𝑖 = (𝐴 gcd 𝐵) → ((𝑖𝐴𝑖𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)))
4847rspcev 2868 . . . 4 (((𝐴 gcd 𝐵) ∈ (ℤ‘2) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
4938, 44, 48syl2anc 411 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
5049ex 115 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 1 → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
5134, 50impbid 129 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7897  1c1 7899   + caddc 7901   < clt 8080  cle 8081  cn 9009  2c2 9060  cz 9345  cuz 9620  cdvds 11971   gcd cgcd 12147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148
This theorem is referenced by:  ncoprmgcdgt1b  12285
  Copyright terms: Public domain W3C validator