ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ncoprmgcdne1b GIF version

Theorem ncoprmgcdne1b 12021
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 df-2 8916 . . . . . . 7 2 = (1 + 1)
2 2re 8927 . . . . . . . . 9 2 ∈ ℝ
32a1i 9 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 2 ∈ ℝ)
4 eluzelz 9475 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
54ad2antlr 481 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℤ)
65zred 9313 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℝ)
7 simplll 523 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐴 ∈ ℕ)
8 simpllr 524 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∈ ℕ)
9 gcdnncl 11900 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
107, 8, 9syl2anc 409 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ)
1110nnred 8870 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴 gcd 𝐵) ∈ ℝ)
12 eluzle 9478 . . . . . . . . 9 (𝑖 ∈ (ℤ‘2) → 2 ≤ 𝑖)
1312ad2antlr 481 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 2 ≤ 𝑖)
14 simpr 109 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴𝑖𝐵))
157nnzd 9312 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐴 ∈ ℤ)
168nnzd 9312 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∈ ℤ)
17 dvdsgcd 11945 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑖𝐴𝑖𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵)))
185, 15, 16, 17syl3anc 1228 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ((𝑖𝐴𝑖𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵)))
1914, 18mpd 13 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∥ (𝐴 gcd 𝐵))
20 dvdsle 11782 . . . . . . . . . 10 ((𝑖 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
215, 10, 20syl2anc 409 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
2219, 21mpd 13 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ≤ (𝐴 gcd 𝐵))
233, 6, 11, 13, 22letrd 8022 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 2 ≤ (𝐴 gcd 𝐵))
241, 23eqbrtrrid 4018 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (1 + 1) ≤ (𝐴 gcd 𝐵))
25 1nn 8868 . . . . . . . 8 1 ∈ ℕ
2625a1i 9 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 1 ∈ ℕ)
27 nnltp1le 9251 . . . . . . 7 ((1 ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵)))
2826, 10, 27syl2anc 409 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵)))
2924, 28mpbird 166 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 1 < (𝐴 gcd 𝐵))
30 nngt1ne1 8892 . . . . . 6 ((𝐴 gcd 𝐵) ∈ ℕ → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3110, 30syl 14 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
3229, 31mpbid 146 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝐴 gcd 𝐵) ≠ 1)
3332ex 114 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝑖𝐵) → (𝐴 gcd 𝐵) ≠ 1))
3433rexlimdva 2583 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → (𝐴 gcd 𝐵) ≠ 1))
359adantr 274 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈ ℕ)
36 simpr 109 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ≠ 1)
37 eluz2b3 9542 . . . . 5 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1))
3835, 36, 37sylanbrc 414 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈ (ℤ‘2))
39 simpll 519 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℕ)
4039nnzd 9312 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℤ)
41 simplr 520 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℕ)
4241nnzd 9312 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℤ)
43 gcddvds 11896 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
4440, 42, 43syl2anc 409 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
45 breq1 3985 . . . . . 6 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴))
46 breq1 3985 . . . . . 6 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵))
4745, 46anbi12d 465 . . . . 5 (𝑖 = (𝐴 gcd 𝐵) → ((𝑖𝐴𝑖𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)))
4847rspcev 2830 . . . 4 (((𝐴 gcd 𝐵) ∈ (ℤ‘2) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
4938, 44, 48syl2anc 409 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵))
5049ex 114 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 1 → ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
5134, 50impbid 128 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wne 2336  wrex 2445   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cn 8857  2c2 8908  cz 9191  cuz 9466  cdvds 11727   gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  ncoprmgcdgt1b  12022
  Copyright terms: Public domain W3C validator