Proof of Theorem ncoprmgcdne1b
| Step | Hyp | Ref
| Expression |
| 1 | | df-2 9066 |
. . . . . . 7
⊢ 2 = (1 +
1) |
| 2 | | 2re 9077 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
| 3 | 2 | a1i 9 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 2 ∈ ℝ) |
| 4 | | eluzelz 9627 |
. . . . . . . . . 10
⊢ (𝑖 ∈
(ℤ≥‘2) → 𝑖 ∈ ℤ) |
| 5 | 4 | ad2antlr 489 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℤ) |
| 6 | 5 | zred 9465 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∈ ℝ) |
| 7 | | simplll 533 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐴 ∈ ℕ) |
| 8 | | simpllr 534 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐵 ∈ ℕ) |
| 9 | | gcdnncl 12159 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 11 | 10 | nnred 9020 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℝ) |
| 12 | | eluzle 9630 |
. . . . . . . . 9
⊢ (𝑖 ∈
(ℤ≥‘2) → 2 ≤ 𝑖) |
| 13 | 12 | ad2antlr 489 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 2 ≤ 𝑖) |
| 14 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) |
| 15 | 7 | nnzd 9464 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐴 ∈ ℤ) |
| 16 | 8 | nnzd 9464 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝐵 ∈ ℤ) |
| 17 | | dvdsgcd 12204 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵))) |
| 18 | 5, 15, 16, 17 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ∥ (𝐴 gcd 𝐵))) |
| 19 | 14, 18 | mpd 13 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ∥ (𝐴 gcd 𝐵)) |
| 20 | | dvdsle 12026 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) |
| 21 | 5, 10, 20 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝑖 ∥ (𝐴 gcd 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) |
| 22 | 19, 21 | mpd 13 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 𝑖 ≤ (𝐴 gcd 𝐵)) |
| 23 | 3, 6, 11, 13, 22 | letrd 8167 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 2 ≤ (𝐴 gcd 𝐵)) |
| 24 | 1, 23 | eqbrtrrid 4070 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (1 + 1) ≤ (𝐴 gcd 𝐵)) |
| 25 | | 1nn 9018 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
| 26 | 25 | a1i 9 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 1 ∈ ℕ) |
| 27 | | nnltp1le 9403 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ (𝐴 gcd
𝐵) ∈ ℕ) →
(1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵))) |
| 28 | 26, 10, 27 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (1 + 1) ≤ (𝐴 gcd 𝐵))) |
| 29 | 24, 28 | mpbird 167 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → 1 < (𝐴 gcd 𝐵)) |
| 30 | | nngt1ne1 9042 |
. . . . . 6
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
| 31 | 10, 30 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (1 < (𝐴 gcd 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |
| 32 | 29, 31 | mpbid 147 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) ∧ (𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) → (𝐴 gcd 𝐵) ≠ 1) |
| 33 | 32 | ex 115 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈
(ℤ≥‘2)) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) |
| 34 | 33 | rexlimdva 2614 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) |
| 35 | 9 | adantr 276 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 36 | | simpr 110 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ≠ 1) |
| 37 | | eluz2b3 9695 |
. . . . 5
⊢ ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1)) |
| 38 | 35, 36, 37 | sylanbrc 417 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → (𝐴 gcd 𝐵) ∈
(ℤ≥‘2)) |
| 39 | | simpll 527 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℕ) |
| 40 | 39 | nnzd 9464 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐴 ∈ ℤ) |
| 41 | | simplr 528 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℕ) |
| 42 | 41 | nnzd 9464 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → 𝐵 ∈ ℤ) |
| 43 | | gcddvds 12155 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 45 | | breq1 4037 |
. . . . . 6
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴)) |
| 46 | | breq1 4037 |
. . . . . 6
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 47 | 45, 46 | anbi12d 473 |
. . . . 5
⊢ (𝑖 = (𝐴 gcd 𝐵) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))) |
| 48 | 47 | rspcev 2868 |
. . . 4
⊢ (((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) |
| 49 | 38, 44, 48 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) ≠ 1) → ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵)) |
| 50 | 49 | ex 115 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 1 → ∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵))) |
| 51 | 34, 50 | impbid 129 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∃𝑖 ∈
(ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) |