ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirq GIF version

Theorem recidpirq 7859
Description: A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
recidpirq (๐‘ โˆˆ N โ†’ (โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ ยท โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ) = 1)
Distinct variable group:   ๐‘,๐‘™,๐‘ข

Proof of Theorem recidpirq
StepHypRef Expression
1 nnprlu 7554 . . . 4 (๐‘ โˆˆ N โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ โˆˆ P)
2 prsrcl 7785 . . . 4 (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ โˆˆ P โ†’ [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R โˆˆ R)
31, 2syl 14 . . 3 (๐‘ โˆˆ N โ†’ [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R โˆˆ R)
4 recnnpr 7549 . . . 4 (๐‘ โˆˆ N โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ โˆˆ P)
5 prsrcl 7785 . . . 4 (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ โˆˆ P โ†’ [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R โˆˆ R)
64, 5syl 14 . . 3 (๐‘ โˆˆ N โ†’ [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R โˆˆ R)
7 mulresr 7839 . . 3 (([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R โˆˆ R โˆง [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R โˆˆ R) โ†’ (โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ ยท โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ) = โŸจ([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ยทR [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ), 0RโŸฉ)
83, 6, 7syl2anc 411 . 2 (๐‘ โˆˆ N โ†’ (โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ ยท โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ) = โŸจ([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ยทR [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ), 0RโŸฉ)
9 1pr 7555 . . . . . . . 8 1P โˆˆ P
109a1i 9 . . . . . . 7 (๐‘ โˆˆ N โ†’ 1P โˆˆ P)
11 addclpr 7538 . . . . . . 7 ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ โˆˆ P โˆง 1P โˆˆ P) โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P)
121, 10, 11syl2anc 411 . . . . . 6 (๐‘ โˆˆ N โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P)
13 addclpr 7538 . . . . . . 7 ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ โˆˆ P โˆง 1P โˆˆ P) โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P)
144, 10, 13syl2anc 411 . . . . . 6 (๐‘ โˆˆ N โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P)
15 mulsrpr 7747 . . . . . 6 ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P โˆง 1P โˆˆ P) โˆง ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P โˆง 1P โˆˆ P)) โ†’ ([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ยทR [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ) = [โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R )
1612, 10, 14, 10, 15syl22anc 1239 . . . . 5 (๐‘ โˆˆ N โ†’ ([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ยทR [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ) = [โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R )
17 recidpipr 7857 . . . . . . 7 (๐‘ โˆˆ N โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ) = 1P)
181, 4, 17recidpirqlemcalc 7858 . . . . . 6 (๐‘ โˆˆ N โ†’ ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)) +P 1P) = ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P))) +P (1P +P 1P)))
19 df-1r 7733 . . . . . . . 8 1R = [โŸจ(1P +P 1P), 1PโŸฉ] ~R
2019eqeq2i 2188 . . . . . . 7 ([โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R = 1R โ†” [โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R = [โŸจ(1P +P 1P), 1PโŸฉ] ~R )
21 mulclpr 7573 . . . . . . . . . 10 (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P โˆง (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P) โ†’ ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) โˆˆ P)
2212, 14, 21syl2anc 411 . . . . . . . . 9 (๐‘ โˆˆ N โ†’ ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) โˆˆ P)
239, 9pm3.2i 272 . . . . . . . . . 10 (1P โˆˆ P โˆง 1P โˆˆ P)
24 mulclpr 7573 . . . . . . . . . 10 ((1P โˆˆ P โˆง 1P โˆˆ P) โ†’ (1P ยทP 1P) โˆˆ P)
2523, 24mp1i 10 . . . . . . . . 9 (๐‘ โˆˆ N โ†’ (1P ยทP 1P) โˆˆ P)
26 addclpr 7538 . . . . . . . . 9 ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) โˆˆ P โˆง (1P ยทP 1P) โˆˆ P) โ†’ (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)) โˆˆ P)
2722, 25, 26syl2anc 411 . . . . . . . 8 (๐‘ โˆˆ N โ†’ (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)) โˆˆ P)
28 mulclpr 7573 . . . . . . . . . 10 (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P โˆง 1P โˆˆ P) โ†’ ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) โˆˆ P)
2912, 10, 28syl2anc 411 . . . . . . . . 9 (๐‘ โˆˆ N โ†’ ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) โˆˆ P)
30 mulclpr 7573 . . . . . . . . . 10 ((1P โˆˆ P โˆง (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P) โˆˆ P) โ†’ (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) โˆˆ P)
3110, 14, 30syl2anc 411 . . . . . . . . 9 (๐‘ โˆˆ N โ†’ (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) โˆˆ P)
32 addclpr 7538 . . . . . . . . 9 ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) โˆˆ P โˆง (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) โˆˆ P) โ†’ (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P))) โˆˆ P)
3329, 31, 32syl2anc 411 . . . . . . . 8 (๐‘ โˆˆ N โ†’ (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P))) โˆˆ P)
34 addclpr 7538 . . . . . . . . 9 ((1P โˆˆ P โˆง 1P โˆˆ P) โ†’ (1P +P 1P) โˆˆ P)
3523, 34mp1i 10 . . . . . . . 8 (๐‘ โˆˆ N โ†’ (1P +P 1P) โˆˆ P)
36 enreceq 7737 . . . . . . . 8 ((((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)) โˆˆ P โˆง (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P))) โˆˆ P) โˆง ((1P +P 1P) โˆˆ P โˆง 1P โˆˆ P)) โ†’ ([โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R = [โŸจ(1P +P 1P), 1PโŸฉ] ~R โ†” ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)) +P 1P) = ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P))) +P (1P +P 1P))))
3727, 33, 35, 10, 36syl22anc 1239 . . . . . . 7 (๐‘ โˆˆ N โ†’ ([โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R = [โŸจ(1P +P 1P), 1PโŸฉ] ~R โ†” ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)) +P 1P) = ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P))) +P (1P +P 1P))))
3820, 37bitrid 192 . . . . . 6 (๐‘ โˆˆ N โ†’ ([โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R = 1R โ†” ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)) +P 1P) = ((((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P))) +P (1P +P 1P))))
3918, 38mpbird 167 . . . . 5 (๐‘ โˆˆ N โ†’ [โŸจ(((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)) +P (1P ยทP 1P)), (((โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P) ยทP 1P) +P (1P ยทP (โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P)))โŸฉ] ~R = 1R)
4016, 39eqtrd 2210 . . . 4 (๐‘ โˆˆ N โ†’ ([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ยทR [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ) = 1R)
4140opeq1d 3786 . . 3 (๐‘ โˆˆ N โ†’ โŸจ([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ยทR [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ), 0RโŸฉ = โŸจ1R, 0RโŸฉ)
42 df-1 7821 . . 3 1 = โŸจ1R, 0RโŸฉ
4341, 42eqtr4di 2228 . 2 (๐‘ โˆˆ N โ†’ โŸจ([โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ยทR [โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R ), 0RโŸฉ = 1)
448, 43eqtrd 2210 1 (๐‘ โˆˆ N โ†’ (โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ ยท โŸจ[โŸจ(โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ +P 1P), 1PโŸฉ] ~R , 0RโŸฉ) = 1)
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   = wceq 1353   โˆˆ wcel 2148  {cab 2163  โŸจcop 3597   class class class wbr 4005  โ€˜cfv 5218  (class class class)co 5877  1oc1o 6412  [cec 6535  Ncnpi 7273   ~Q ceq 7280  *Qcrq 7285   <Q cltq 7286  Pcnp 7292  1Pc1p 7293   +P cpp 7294   ยทP cmp 7295   ~R cer 7297  Rcnr 7298  0Rc0r 7299  1Rc1r 7300   ยทR cmr 7303  1c1 7814   ยท cmul 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-i1p 7468  df-iplp 7469  df-imp 7470  df-enr 7727  df-nr 7728  df-plr 7729  df-mr 7730  df-0r 7732  df-1r 7733  df-m1r 7734  df-c 7819  df-1 7821  df-mul 7825
This theorem is referenced by:  recriota  7891
  Copyright terms: Public domain W3C validator