Proof of Theorem recidpirq
| Step | Hyp | Ref
| Expression |
| 1 | | nnprlu 7620 |
. . . 4
⊢ (𝑁 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ∈
P) |
| 2 | | prsrcl 7851 |
. . . 4
⊢
(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ∈ P →
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
| 3 | 1, 2 | syl 14 |
. . 3
⊢ (𝑁 ∈ N →
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
| 4 | | recnnpr 7615 |
. . . 4
⊢ (𝑁 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
| 5 | | prsrcl 7851 |
. . . 4
⊢
(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P →
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
| 6 | 4, 5 | syl 14 |
. . 3
⊢ (𝑁 ∈ N →
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
| 7 | | mulresr 7905 |
. . 3
⊢
(([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R ∧ [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) →
(〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ·
〈[〈(〈{𝑙
∣ 𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) =
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ),
0R〉) |
| 8 | 3, 6, 7 | syl2anc 411 |
. 2
⊢ (𝑁 ∈ N →
(〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ·
〈[〈(〈{𝑙
∣ 𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) =
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ),
0R〉) |
| 9 | | 1pr 7621 |
. . . . . . . 8
⊢
1P ∈ P |
| 10 | 9 | a1i 9 |
. . . . . . 7
⊢ (𝑁 ∈ N →
1P ∈ P) |
| 11 | | addclpr 7604 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ∈ P ∧
1P ∈ P) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P) |
| 12 | 1, 10, 11 | syl2anc 411 |
. . . . . 6
⊢ (𝑁 ∈ N →
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P) |
| 13 | | addclpr 7604 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P ∧
1P ∈ P) → (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) |
| 14 | 4, 10, 13 | syl2anc 411 |
. . . . . 6
⊢ (𝑁 ∈ N →
(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) |
| 15 | | mulsrpr 7813 |
. . . . . 6
⊢
((((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧
1P ∈ P) ∧ ((〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P ∧
1P ∈ P)) →
([〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = [〈(((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R
) |
| 16 | 12, 10, 14, 10, 15 | syl22anc 1250 |
. . . . 5
⊢ (𝑁 ∈ N →
([〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = [〈(((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R
) |
| 17 | | recidpipr 7923 |
. . . . . . 7
⊢ (𝑁 ∈ N →
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ·P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉) =
1P) |
| 18 | 1, 4, 17 | recidpirqlemcalc 7924 |
. . . . . 6
⊢ (𝑁 ∈ N →
((((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P))) |
| 19 | | df-1r 7799 |
. . . . . . . 8
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R |
| 20 | 19 | eqeq2i 2207 |
. . . . . . 7
⊢
([〈(((〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
1R ↔ [〈(((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ) |
| 21 | | mulclpr 7639 |
. . . . . . . . . 10
⊢
(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧ (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) → ((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
| 22 | 12, 14, 21 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
| 23 | 9, 9 | pm3.2i 272 |
. . . . . . . . . 10
⊢
(1P ∈ P ∧
1P ∈ P) |
| 24 | | mulclpr 7639 |
. . . . . . . . . 10
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P ·P
1P) ∈ P) |
| 25 | 23, 24 | mp1i 10 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
(1P ·P
1P) ∈ P) |
| 26 | | addclpr 7604 |
. . . . . . . . 9
⊢
((((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P ∧
(1P ·P
1P) ∈ P) → (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) ∈ P) |
| 27 | 22, 25, 26 | syl2anc 411 |
. . . . . . . 8
⊢ (𝑁 ∈ N →
(((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) ∈ P) |
| 28 | | mulclpr 7639 |
. . . . . . . . . 10
⊢
(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧
1P ∈ P) → ((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) ∈ P) |
| 29 | 12, 10, 28 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) ∈ P) |
| 30 | | mulclpr 7639 |
. . . . . . . . . 10
⊢
((1P ∈ P ∧ (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) →
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
| 31 | 10, 14, 30 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
| 32 | | addclpr 7604 |
. . . . . . . . 9
⊢
((((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) ∈ P ∧
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) → (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) ∈ P) |
| 33 | 29, 31, 32 | syl2anc 411 |
. . . . . . . 8
⊢ (𝑁 ∈ N →
(((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) ∈ P) |
| 34 | | addclpr 7604 |
. . . . . . . . 9
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
| 35 | 23, 34 | mp1i 10 |
. . . . . . . 8
⊢ (𝑁 ∈ N →
(1P +P
1P) ∈ P) |
| 36 | | enreceq 7803 |
. . . . . . . 8
⊢
((((((〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) ∈ P ∧ (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) ∈ P) ∧
((1P +P
1P) ∈ P ∧
1P ∈ P)) →
([〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P)))) |
| 37 | 27, 33, 35, 10, 36 | syl22anc 1250 |
. . . . . . 7
⊢ (𝑁 ∈ N →
([〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P)))) |
| 38 | 20, 37 | bitrid 192 |
. . . . . 6
⊢ (𝑁 ∈ N →
([〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
1R ↔ ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P)))) |
| 39 | 18, 38 | mpbird 167 |
. . . . 5
⊢ (𝑁 ∈ N →
[〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
1R) |
| 40 | 16, 39 | eqtrd 2229 |
. . . 4
⊢ (𝑁 ∈ N →
([〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = 1R) |
| 41 | 40 | opeq1d 3814 |
. . 3
⊢ (𝑁 ∈ N →
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ), 0R〉 =
〈1R,
0R〉) |
| 42 | | df-1 7887 |
. . 3
⊢ 1 =
〈1R,
0R〉 |
| 43 | 41, 42 | eqtr4di 2247 |
. 2
⊢ (𝑁 ∈ N →
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ), 0R〉 =
1) |
| 44 | 8, 43 | eqtrd 2229 |
1
⊢ (𝑁 ∈ N →
(〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ·
〈[〈(〈{𝑙
∣ 𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) =
1) |