ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirq GIF version

Theorem recidpirq 7820
Description: A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
recidpirq (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
Distinct variable group:   𝑁,𝑙,𝑢

Proof of Theorem recidpirq
StepHypRef Expression
1 nnprlu 7515 . . . 4 (𝑁N → ⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
2 prsrcl 7746 . . . 4 (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
31, 2syl 14 . . 3 (𝑁N → [⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
4 recnnpr 7510 . . . 4 (𝑁N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
5 prsrcl 7746 . . . 4 (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
64, 5syl 14 . . 3 (𝑁N → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
7 mulresr 7800 . . 3 (([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR ∧ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ·R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
83, 6, 7syl2anc 409 . 2 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ·R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩)
9 1pr 7516 . . . . . . . 8 1PP
109a1i 9 . . . . . . 7 (𝑁N → 1PP)
11 addclpr 7499 . . . . . . 7 ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
121, 10, 11syl2anc 409 . . . . . 6 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
13 addclpr 7499 . . . . . . 7 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P)
144, 10, 13syl2anc 409 . . . . . 6 (𝑁N → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P)
15 mulsrpr 7708 . . . . . 6 ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) ∧ ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP)) → ([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ·R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = [⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R )
1612, 10, 14, 10, 15syl22anc 1234 . . . . 5 (𝑁N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ·R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = [⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R )
17 recidpipr 7818 . . . . . . 7 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
181, 4, 17recidpirqlemcalc 7819 . . . . . 6 (𝑁N → ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))) +P (1P +P 1P)))
19 df-1r 7694 . . . . . . . 8 1R = [⟨(1P +P 1P), 1P⟩] ~R
2019eqeq2i 2181 . . . . . . 7 ([⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R = 1R ↔ [⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
21 mulclpr 7534 . . . . . . . . . 10 (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P) → ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) ∈ P)
2212, 14, 21syl2anc 409 . . . . . . . . 9 (𝑁N → ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) ∈ P)
239, 9pm3.2i 270 . . . . . . . . . 10 (1PP ∧ 1PP)
24 mulclpr 7534 . . . . . . . . . 10 ((1PP ∧ 1PP) → (1P ·P 1P) ∈ P)
2523, 24mp1i 10 . . . . . . . . 9 (𝑁N → (1P ·P 1P) ∈ P)
26 addclpr 7499 . . . . . . . . 9 ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) ∈ P ∧ (1P ·P 1P) ∈ P) → (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)) ∈ P)
2722, 25, 26syl2anc 409 . . . . . . . 8 (𝑁N → (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)) ∈ P)
28 mulclpr 7534 . . . . . . . . . 10 (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) ∈ P)
2912, 10, 28syl2anc 409 . . . . . . . . 9 (𝑁N → ((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) ∈ P)
30 mulclpr 7534 . . . . . . . . . 10 ((1PP ∧ (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P) → (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) ∈ P)
3110, 14, 30syl2anc 409 . . . . . . . . 9 (𝑁N → (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) ∈ P)
32 addclpr 7499 . . . . . . . . 9 ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) ∈ P ∧ (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) ∈ P) → (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))) ∈ P)
3329, 31, 32syl2anc 409 . . . . . . . 8 (𝑁N → (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))) ∈ P)
34 addclpr 7499 . . . . . . . . 9 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
3523, 34mp1i 10 . . . . . . . 8 (𝑁N → (1P +P 1P) ∈ P)
36 enreceq 7698 . . . . . . . 8 ((((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)) ∈ P ∧ (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))) +P (1P +P 1P))))
3727, 33, 35, 10, 36syl22anc 1234 . . . . . . 7 (𝑁N → ([⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))) +P (1P +P 1P))))
3820, 37syl5bb 191 . . . . . 6 (𝑁N → ([⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R = 1R ↔ ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))) +P (1P +P 1P))))
3918, 38mpbird 166 . . . . 5 (𝑁N → [⟨(((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)) +P (1P ·P 1P)), (((⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ·P 1P) +P (1P ·P (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P)))⟩] ~R = 1R)
4016, 39eqtrd 2203 . . . 4 (𝑁N → ([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ·R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = 1R)
4140opeq1d 3771 . . 3 (𝑁N → ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ·R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ = ⟨1R, 0R⟩)
42 df-1 7782 . . 3 1 = ⟨1R, 0R
4341, 42eqtr4di 2221 . 2 (𝑁N → ⟨([⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ·R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ), 0R⟩ = 1)
448, 43eqtrd 2203 1 (𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1oc1o 6388  [cec 6511  Ncnpi 7234   ~Q ceq 7241  *Qcrq 7246   <Q cltq 7247  Pcnp 7253  1Pc1p 7254   +P cpp 7255   ·P cmp 7256   ~R cer 7258  Rcnr 7259  0Rc0r 7260  1Rc1r 7261   ·R cmr 7264  1c1 7775   · cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-0r 7693  df-1r 7694  df-m1r 7695  df-c 7780  df-1 7782  df-mul 7786
This theorem is referenced by:  recriota  7852
  Copyright terms: Public domain W3C validator