Proof of Theorem recidpirq
Step | Hyp | Ref
| Expression |
1 | | nnprlu 7494 |
. . . 4
⊢ (𝑁 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ∈
P) |
2 | | prsrcl 7725 |
. . . 4
⊢
(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ∈ P →
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝑁 ∈ N →
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
4 | | recnnpr 7489 |
. . . 4
⊢ (𝑁 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
5 | | prsrcl 7725 |
. . . 4
⊢
(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P →
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
6 | 4, 5 | syl 14 |
. . 3
⊢ (𝑁 ∈ N →
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) |
7 | | mulresr 7779 |
. . 3
⊢
(([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R ∧ [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) →
(〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ·
〈[〈(〈{𝑙
∣ 𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) =
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ),
0R〉) |
8 | 3, 6, 7 | syl2anc 409 |
. 2
⊢ (𝑁 ∈ N →
(〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ·
〈[〈(〈{𝑙
∣ 𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) =
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ),
0R〉) |
9 | | 1pr 7495 |
. . . . . . . 8
⊢
1P ∈ P |
10 | 9 | a1i 9 |
. . . . . . 7
⊢ (𝑁 ∈ N →
1P ∈ P) |
11 | | addclpr 7478 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ∈ P ∧
1P ∈ P) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P) |
12 | 1, 10, 11 | syl2anc 409 |
. . . . . 6
⊢ (𝑁 ∈ N →
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P) |
13 | | addclpr 7478 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P ∧
1P ∈ P) → (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) |
14 | 4, 10, 13 | syl2anc 409 |
. . . . . 6
⊢ (𝑁 ∈ N →
(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) |
15 | | mulsrpr 7687 |
. . . . . 6
⊢
((((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧
1P ∈ P) ∧ ((〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P ∧
1P ∈ P)) →
([〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = [〈(((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R
) |
16 | 12, 10, 14, 10, 15 | syl22anc 1229 |
. . . . 5
⊢ (𝑁 ∈ N →
([〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = [〈(((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R
) |
17 | | recidpipr 7797 |
. . . . . . 7
⊢ (𝑁 ∈ N →
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 ·P
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉) =
1P) |
18 | 1, 4, 17 | recidpirqlemcalc 7798 |
. . . . . 6
⊢ (𝑁 ∈ N →
((((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P))) |
19 | | df-1r 7673 |
. . . . . . . 8
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R |
20 | 19 | eqeq2i 2176 |
. . . . . . 7
⊢
([〈(((〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
1R ↔ [〈(((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ) |
21 | | mulclpr 7513 |
. . . . . . . . . 10
⊢
(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧ (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) → ((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
22 | 12, 14, 21 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
23 | 9, 9 | pm3.2i 270 |
. . . . . . . . . 10
⊢
(1P ∈ P ∧
1P ∈ P) |
24 | | mulclpr 7513 |
. . . . . . . . . 10
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P ·P
1P) ∈ P) |
25 | 23, 24 | mp1i 10 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
(1P ·P
1P) ∈ P) |
26 | | addclpr 7478 |
. . . . . . . . 9
⊢
((((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P ∧
(1P ·P
1P) ∈ P) → (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) ∈ P) |
27 | 22, 25, 26 | syl2anc 409 |
. . . . . . . 8
⊢ (𝑁 ∈ N →
(((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) ∈ P) |
28 | | mulclpr 7513 |
. . . . . . . . . 10
⊢
(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧
1P ∈ P) → ((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) ∈ P) |
29 | 12, 10, 28 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) ∈ P) |
30 | | mulclpr 7513 |
. . . . . . . . . 10
⊢
((1P ∈ P ∧ (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P) ∈ P) →
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
31 | 10, 14, 30 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝑁 ∈ N →
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) |
32 | | addclpr 7478 |
. . . . . . . . 9
⊢
((((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) ∈ P ∧
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) ∈ P) → (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) ∈ P) |
33 | 29, 31, 32 | syl2anc 409 |
. . . . . . . 8
⊢ (𝑁 ∈ N →
(((〈{𝑙 ∣ 𝑙 <Q
[〈𝑁,
1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) ∈ P) |
34 | | addclpr 7478 |
. . . . . . . . 9
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
35 | 23, 34 | mp1i 10 |
. . . . . . . 8
⊢ (𝑁 ∈ N →
(1P +P
1P) ∈ P) |
36 | | enreceq 7677 |
. . . . . . . 8
⊢
((((((〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) ∈ P ∧ (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) ∈ P) ∧
((1P +P
1P) ∈ P ∧
1P ∈ P)) →
([〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P)))) |
37 | 27, 33, 35, 10, 36 | syl22anc 1229 |
. . . . . . 7
⊢ (𝑁 ∈ N →
([〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P)))) |
38 | 20, 37 | syl5bb 191 |
. . . . . 6
⊢ (𝑁 ∈ N →
([〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
1R ↔ ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P))) +P
(1P +P
1P)))) |
39 | 18, 38 | mpbird 166 |
. . . . 5
⊢ (𝑁 ∈ N →
[〈(((〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)) +P
(1P ·P
1P)), (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ·P
1P) +P
(1P ·P (〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P)))〉] ~R =
1R) |
40 | 16, 39 | eqtrd 2198 |
. . . 4
⊢ (𝑁 ∈ N →
([〈(〈{𝑙 ∣
𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = 1R) |
41 | 40 | opeq1d 3764 |
. . 3
⊢ (𝑁 ∈ N →
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ), 0R〉 =
〈1R,
0R〉) |
42 | | df-1 7761 |
. . 3
⊢ 1 =
〈1R,
0R〉 |
43 | 41, 42 | eqtr4di 2217 |
. 2
⊢ (𝑁 ∈ N →
〈([〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ·R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ), 0R〉 =
1) |
44 | 8, 43 | eqtrd 2198 |
1
⊢ (𝑁 ∈ N →
(〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑁, 1o〉]
~Q }, {𝑢 ∣ [〈𝑁, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ·
〈[〈(〈{𝑙
∣ 𝑙
<Q (*Q‘[〈𝑁, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑁, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) =
1) |