ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovim GIF version

Theorem fnovim 5950
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
Assertion
Ref Expression
fnovim (𝐹 Fn (𝐴 × 𝐵) → 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fnovim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5532 . 2 (𝐹 Fn (𝐴 × 𝐵) → 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)))
2 fveq2 5486 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 5845 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2217 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54mpompt 5934 . . 3 (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦))
65eqeq2i 2176 . 2 (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
71, 6sylib 121 1 (𝐹 Fn (𝐴 × 𝐵) → 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cop 3579  cmpt 4043   × cxp 4602   Fn wfn 5183  cfv 5188  (class class class)co 5842  cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  mapxpen  6814  dfioo2  9910  plusfeqg  12595  cnmpt22f  12945  cnmptcom  12948  bdxmet  13151
  Copyright terms: Public domain W3C validator