![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fsump1i | GIF version |
Description: Optimized version of fsump1 10810 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fsump1i.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
fsump1i.2 | ⊢ 𝑁 = (𝐾 + 1) |
fsump1i.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
fsump1i.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
fsump1i.5 | ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) |
fsump1i.6 | ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) |
Ref | Expression |
---|---|
fsump1i | ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsump1i.2 | . . 3 ⊢ 𝑁 = (𝐾 + 1) | |
2 | fsump1i.5 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) | |
3 | 2 | simpld 110 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑍) |
4 | fsump1i.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 3, 4 | syl6eleq 2180 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
6 | peano2uz 9069 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 + 1) ∈ (ℤ≥‘𝑀)) | |
7 | 6, 4 | syl6eleqr 2181 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 + 1) ∈ 𝑍) |
8 | 5, 7 | syl 14 | . . 3 ⊢ (𝜑 → (𝐾 + 1) ∈ 𝑍) |
9 | 1, 8 | syl5eqel 2174 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
10 | 1 | oveq2i 5663 | . . . . 5 ⊢ (𝑀...𝑁) = (𝑀...(𝐾 + 1)) |
11 | 10 | sumeq1i 10748 | . . . 4 ⊢ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 |
12 | elfzuz 9434 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
13 | 12, 4 | syl6eleqr 2181 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ 𝑍) |
14 | fsump1i.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
15 | 13, 14 | sylan2 280 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐾 + 1))) → 𝐴 ∈ ℂ) |
16 | 1 | eqeq2i 2098 | . . . . . 6 ⊢ (𝑘 = 𝑁 ↔ 𝑘 = (𝐾 + 1)) |
17 | fsump1i.3 | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
18 | 16, 17 | sylbir 133 | . . . . 5 ⊢ (𝑘 = (𝐾 + 1) → 𝐴 = 𝐵) |
19 | 5, 15, 18 | fsump1 10810 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵)) |
20 | 11, 19 | syl5eq 2132 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵)) |
21 | 2 | simprd 112 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆) |
22 | 21 | oveq1d 5667 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵) = (𝑆 + 𝐵)) |
23 | fsump1i.6 | . . 3 ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) | |
24 | 20, 22, 23 | 3eqtrd 2124 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇) |
25 | 9, 24 | jca 300 | 1 ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ‘cfv 5015 (class class class)co 5652 ℂcc 7346 1c1 7349 + caddc 7351 ℤ≥cuz 9017 ...cfz 9422 Σcsu 10738 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-mulrcl 7442 ax-addcom 7443 ax-mulcom 7444 ax-addass 7445 ax-mulass 7446 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-1rid 7450 ax-0id 7451 ax-rnegex 7452 ax-precex 7453 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-apti 7458 ax-pre-ltadd 7459 ax-pre-mulgt0 7460 ax-pre-mulext 7461 ax-arch 7462 ax-caucvg 7463 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-po 4123 df-iso 4124 df-iord 4193 df-on 4195 df-ilim 4196 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-isom 5024 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-irdg 6135 df-frec 6156 df-1o 6181 df-oadd 6185 df-er 6290 df-en 6456 df-dom 6457 df-fin 6458 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-reap 8050 df-ap 8057 df-div 8138 df-inn 8421 df-2 8479 df-3 8480 df-4 8481 df-n0 8672 df-z 8749 df-uz 9018 df-q 9103 df-rp 9133 df-fz 9423 df-fzo 9550 df-iseq 9849 df-seq3 9850 df-exp 9951 df-ihash 10180 df-cj 10272 df-re 10273 df-im 10274 df-rsqrt 10427 df-abs 10428 df-clim 10663 df-isum 10739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |