ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsump1i GIF version

Theorem fsump1i 11939
Description: Optimized version of fsump1 11926 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsump1i.1 𝑍 = (ℤ𝑀)
fsump1i.2 𝑁 = (𝐾 + 1)
fsump1i.3 (𝑘 = 𝑁𝐴 = 𝐵)
fsump1i.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsump1i.5 (𝜑 → (𝐾𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆))
fsump1i.6 (𝜑 → (𝑆 + 𝐵) = 𝑇)
Assertion
Ref Expression
fsump1i (𝜑 → (𝑁𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑘)   𝑇(𝑘)   𝑍(𝑘)

Proof of Theorem fsump1i
StepHypRef Expression
1 fsump1i.2 . . 3 𝑁 = (𝐾 + 1)
2 fsump1i.5 . . . . . 6 (𝜑 → (𝐾𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆))
32simpld 112 . . . . 5 (𝜑𝐾𝑍)
4 fsump1i.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4eleqtrdi 2322 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
6 peano2uz 9774 . . . . 5 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
76, 4eleqtrrdi 2323 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ 𝑍)
85, 7syl 14 . . 3 (𝜑 → (𝐾 + 1) ∈ 𝑍)
91, 8eqeltrid 2316 . 2 (𝜑𝑁𝑍)
101oveq2i 6011 . . . . 5 (𝑀...𝑁) = (𝑀...(𝐾 + 1))
1110sumeq1i 11869 . . . 4 Σ𝑘 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴
12 elfzuz 10213 . . . . . . 7 (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ (ℤ𝑀))
1312, 4eleqtrrdi 2323 . . . . . 6 (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘𝑍)
14 fsump1i.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
1513, 14sylan2 286 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝐾 + 1))) → 𝐴 ∈ ℂ)
161eqeq2i 2240 . . . . . 6 (𝑘 = 𝑁𝑘 = (𝐾 + 1))
17 fsump1i.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
1816, 17sylbir 135 . . . . 5 (𝑘 = (𝐾 + 1) → 𝐴 = 𝐵)
195, 15, 18fsump1 11926 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵))
2011, 19eqtrid 2274 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵))
212simprd 114 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)
2221oveq1d 6015 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵) = (𝑆 + 𝐵))
23 fsump1i.6 . . 3 (𝜑 → (𝑆 + 𝐵) = 𝑇)
2420, 22, 233eqtrd 2266 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)
259, 24jca 306 1 (𝜑 → (𝑁𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  cc 7993  1c1 7996   + caddc 7998  cuz 9718  ...cfz 10200  Σcsu 11859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator