ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acnccim GIF version

Theorem acnccim 7426
Description: Given countable choice, every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnccim (CCHOICEAC ω = V)

Proof of Theorem acnccim
Dummy variables 𝑓 𝑔 𝑗 𝑦 𝑧 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → CCHOICE)
2 elmapfn 6788 . . . . . . . 8 (𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω) → 𝑓 Fn ω)
32adantl 277 . . . . . . 7 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → 𝑓 Fn ω)
4 elmapi 6787 . . . . . . . . . . . 12 (𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω) → 𝑓:ω⟶{𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧})
54ad2antlr 489 . . . . . . . . . . 11 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → 𝑓:ω⟶{𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧})
6 simpr 110 . . . . . . . . . . 11 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
75, 6ffvelcdmd 5744 . . . . . . . . . 10 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ∈ {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧})
8 eleq2 2273 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑛) → (𝑗𝑧𝑗 ∈ (𝑓𝑛)))
98exbidv 1851 . . . . . . . . . . 11 (𝑧 = (𝑓𝑛) → (∃𝑗 𝑗𝑧 ↔ ∃𝑗 𝑗 ∈ (𝑓𝑛)))
109elrab 2939 . . . . . . . . . 10 ((𝑓𝑛) ∈ {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↔ ((𝑓𝑛) ∈ 𝒫 𝑥 ∧ ∃𝑗 𝑗 ∈ (𝑓𝑛)))
117, 10sylib 122 . . . . . . . . 9 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → ((𝑓𝑛) ∈ 𝒫 𝑥 ∧ ∃𝑗 𝑗 ∈ (𝑓𝑛)))
1211simprd 114 . . . . . . . 8 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → ∃𝑗 𝑗 ∈ (𝑓𝑛))
1312ralrimiva 2583 . . . . . . 7 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → ∀𝑛 ∈ ω ∃𝑗 𝑗 ∈ (𝑓𝑛))
141, 3, 13cc2 7421 . . . . . 6 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
15 exsimpr 1644 . . . . . 6 (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
1614, 15syl 14 . . . . 5 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
1716ralrimiva 2583 . . . 4 (CCHOICE → ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
18 vex 2782 . . . . 5 𝑥 ∈ V
19 omex 4662 . . . . 5 ω ∈ V
20 isacnm 7353 . . . . 5 ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥AC ω ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
2118, 19, 20mp2an 426 . . . 4 (𝑥AC ω ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
2217, 21sylibr 134 . . 3 (CCHOICE𝑥AC ω)
2318a1i 9 . . 3 (CCHOICE𝑥 ∈ V)
2422, 232thd 175 . 2 (CCHOICE → (𝑥AC ω ↔ 𝑥 ∈ V))
2524eqrdv 2207 1 (CCHOICEAC ω = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wex 1518  wcel 2180  wral 2488  {crab 2492  Vcvv 2779  𝒫 cpw 3629  ωcom 4659   Fn wfn 5289  wf 5290  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  AC wacn 7318  CCHOICEwacc 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-2nd 6257  df-er 6650  df-map 6767  df-en 6858  df-acnm 7320  df-cc 7417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator