ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acnccim GIF version

Theorem acnccim 7391
Description: Given countable choice, every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnccim (CCHOICEAC ω = V)

Proof of Theorem acnccim
Dummy variables 𝑓 𝑔 𝑗 𝑦 𝑧 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → CCHOICE)
2 elmapfn 6765 . . . . . . . 8 (𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω) → 𝑓 Fn ω)
32adantl 277 . . . . . . 7 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → 𝑓 Fn ω)
4 elmapi 6764 . . . . . . . . . . . 12 (𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω) → 𝑓:ω⟶{𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧})
54ad2antlr 489 . . . . . . . . . . 11 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → 𝑓:ω⟶{𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧})
6 simpr 110 . . . . . . . . . . 11 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
75, 6ffvelcdmd 5723 . . . . . . . . . 10 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ∈ {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧})
8 eleq2 2270 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑛) → (𝑗𝑧𝑗 ∈ (𝑓𝑛)))
98exbidv 1849 . . . . . . . . . . 11 (𝑧 = (𝑓𝑛) → (∃𝑗 𝑗𝑧 ↔ ∃𝑗 𝑗 ∈ (𝑓𝑛)))
109elrab 2930 . . . . . . . . . 10 ((𝑓𝑛) ∈ {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↔ ((𝑓𝑛) ∈ 𝒫 𝑥 ∧ ∃𝑗 𝑗 ∈ (𝑓𝑛)))
117, 10sylib 122 . . . . . . . . 9 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → ((𝑓𝑛) ∈ 𝒫 𝑥 ∧ ∃𝑗 𝑗 ∈ (𝑓𝑛)))
1211simprd 114 . . . . . . . 8 (((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) ∧ 𝑛 ∈ ω) → ∃𝑗 𝑗 ∈ (𝑓𝑛))
1312ralrimiva 2580 . . . . . . 7 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → ∀𝑛 ∈ ω ∃𝑗 𝑗 ∈ (𝑓𝑛))
141, 3, 13cc2 7386 . . . . . 6 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
15 exsimpr 1642 . . . . . 6 (∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
1614, 15syl 14 . . . . 5 ((CCHOICE𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)) → ∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
1716ralrimiva 2580 . . . 4 (CCHOICE → ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
18 vex 2776 . . . . 5 𝑥 ∈ V
19 omex 4645 . . . . 5 ω ∈ V
20 isacnm 7322 . . . . 5 ((𝑥 ∈ V ∧ ω ∈ V) → (𝑥AC ω ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦)))
2118, 19, 20mp2an 426 . . . 4 (𝑥AC ω ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 ω)∃𝑔𝑦 ∈ ω (𝑔𝑦) ∈ (𝑓𝑦))
2217, 21sylibr 134 . . 3 (CCHOICE𝑥AC ω)
2318a1i 9 . . 3 (CCHOICE𝑥 ∈ V)
2422, 232thd 175 . 2 (CCHOICE → (𝑥AC ω ↔ 𝑥 ∈ V))
2524eqrdv 2204 1 (CCHOICEAC ω = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  wral 2485  {crab 2489  Vcvv 2773  𝒫 cpw 3617  ωcom 4642   Fn wfn 5271  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  AC wacn 7292  CCHOICEwacc 7381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-2nd 6234  df-er 6627  df-map 6744  df-en 6835  df-acnm 7294  df-cc 7382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator