| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . . . . 7
⊢
((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) →
CCHOICE) |
| 2 | | elmapfn 6739 |
. . . . . . . 8
⊢ (𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω) →
𝑓 Fn
ω) |
| 3 | 2 | adantl 277 |
. . . . . . 7
⊢
((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) →
𝑓 Fn
ω) |
| 4 | | elmapi 6738 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω) →
𝑓:ω⟶{𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧}) |
| 5 | 4 | ad2antlr 489 |
. . . . . . . . . . 11
⊢
(((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) ∧
𝑛 ∈ ω) →
𝑓:ω⟶{𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧}) |
| 6 | | simpr 110 |
. . . . . . . . . . 11
⊢
(((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) ∧
𝑛 ∈ ω) →
𝑛 ∈
ω) |
| 7 | 5, 6 | ffvelcdmd 5701 |
. . . . . . . . . 10
⊢
(((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) ∧
𝑛 ∈ ω) →
(𝑓‘𝑛) ∈ {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧}) |
| 8 | | eleq2 2260 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑓‘𝑛) → (𝑗 ∈ 𝑧 ↔ 𝑗 ∈ (𝑓‘𝑛))) |
| 9 | 8 | exbidv 1839 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑓‘𝑛) → (∃𝑗 𝑗 ∈ 𝑧 ↔ ∃𝑗 𝑗 ∈ (𝑓‘𝑛))) |
| 10 | 9 | elrab 2920 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↔ ((𝑓‘𝑛) ∈ 𝒫 𝑥 ∧ ∃𝑗 𝑗 ∈ (𝑓‘𝑛))) |
| 11 | 7, 10 | sylib 122 |
. . . . . . . . 9
⊢
(((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) ∧
𝑛 ∈ ω) →
((𝑓‘𝑛) ∈ 𝒫 𝑥 ∧ ∃𝑗 𝑗 ∈ (𝑓‘𝑛))) |
| 12 | 11 | simprd 114 |
. . . . . . . 8
⊢
(((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) ∧
𝑛 ∈ ω) →
∃𝑗 𝑗 ∈ (𝑓‘𝑛)) |
| 13 | 12 | ralrimiva 2570 |
. . . . . . 7
⊢
((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) →
∀𝑛 ∈ ω
∃𝑗 𝑗 ∈ (𝑓‘𝑛)) |
| 14 | 1, 3, 13 | cc2 7350 |
. . . . . 6
⊢
((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) →
∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 15 | | exsimpr 1632 |
. . . . . 6
⊢
(∃𝑔(𝑔 Fn ω ∧ ∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 16 | 14, 15 | syl 14 |
. . . . 5
⊢
((CCHOICE ∧ 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 ω)) →
∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 17 | 16 | ralrimiva 2570 |
. . . 4
⊢
(CCHOICE → ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚
ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 18 | | vex 2766 |
. . . . 5
⊢ 𝑥 ∈ V |
| 19 | | omex 4630 |
. . . . 5
⊢ ω
∈ V |
| 20 | | isacnm 7286 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ ω ∈
V) → (𝑥 ∈
AC ω ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚
ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 21 | 18, 19, 20 | mp2an 426 |
. . . 4
⊢ (𝑥 ∈ AC ω ↔
∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚
ω)∃𝑔∀𝑦 ∈ ω (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 22 | 17, 21 | sylibr 134 |
. . 3
⊢
(CCHOICE → 𝑥 ∈ AC ω) |
| 23 | 18 | a1i 9 |
. . 3
⊢
(CCHOICE → 𝑥 ∈ V) |
| 24 | 22, 23 | 2thd 175 |
. 2
⊢
(CCHOICE → (𝑥 ∈ AC ω ↔ 𝑥 ∈ V)) |
| 25 | 24 | eqrdv 2194 |
1
⊢
(CCHOICE → AC ω = V) |