ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addex GIF version

Theorem addex 9815
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 8089 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 8091 . . 3 ℂ ∈ V
32, 2xpex 4811 . 2 (ℂ × ℂ) ∈ V
4 fex2 5468 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1352 1 + ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2180  Vcvv 2779   × cxp 4694  wf 5290  cc 7965   + caddc 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-addf 8089
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-dm 4706  df-rn 4707  df-fun 5296  df-fn 5297  df-f 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator