| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addex | GIF version | ||
| Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| addex | ⊢ + ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addf 8018 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 8020 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 4779 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 5429 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1348 | 1 ⊢ + ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 × cxp 4662 ⟶wf 5255 ℂcc 7894 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-addf 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |