ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringn0 GIF version

Theorem ringn0 13866
Description: The class of rings is not empty (it is also inhabited, as shown at ring1 13865). (Contributed by AV, 29-Apr-2019.)
Assertion
Ref Expression
ringn0 Ring ≠ ∅

Proof of Theorem ringn0
StepHypRef Expression
1 vex 2776 . 2 𝑧 ∈ V
2 eqid 2206 . . 3 {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} = {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}
32ring1 13865 . 2 (𝑧 ∈ V → {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} ∈ Ring)
4 ne0i 3468 . 2 ({⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} ∈ Ring → Ring ≠ ∅)
51, 3, 4mp2b 8 1 Ring ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2177  wne 2377  Vcvv 2773  c0 3461  {csn 3634  {ctp 3636  cop 3637  cfv 5276  ndxcnx 12873  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Ringcrg 13802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-mgp 13727  df-ring 13804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator