ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringn0 GIF version

Theorem ringn0 13989
Description: The class of rings is not empty (it is also inhabited, as shown at ring1 13988). (Contributed by AV, 29-Apr-2019.)
Assertion
Ref Expression
ringn0 Ring ≠ ∅

Proof of Theorem ringn0
StepHypRef Expression
1 vex 2782 . 2 𝑧 ∈ V
2 eqid 2209 . . 3 {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} = {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}
32ring1 13988 . 2 (𝑧 ∈ V → {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} ∈ Ring)
4 ne0i 3478 . 2 ({⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} ∈ Ring → Ring ≠ ∅)
51, 3, 4mp2b 8 1 Ring ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2180  wne 2380  Vcvv 2779  c0 3471  {csn 3646  {ctp 3648  cop 3649  cfv 5294  ndxcnx 12995  Basecbs 12998  +gcplusg 13076  .rcmulr 13077  Ringcrg 13925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-mgp 13850  df-ring 13927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator