Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzn0 | GIF version |
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
Ref | Expression |
---|---|
uzn0 | ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9469 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | ffn 5337 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
3 | fvelrnb 5534 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀)) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀) |
5 | uzid 9480 | . . . . 5 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ≥‘𝑘)) | |
6 | ne0i 3415 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑘) → (ℤ≥‘𝑘) ≠ ∅) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝑘 ∈ ℤ → (ℤ≥‘𝑘) ≠ ∅) |
8 | neeq1 2349 | . . . 4 ⊢ ((ℤ≥‘𝑘) = 𝑀 → ((ℤ≥‘𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅)) | |
9 | 7, 8 | syl5ibcom 154 | . . 3 ⊢ (𝑘 ∈ ℤ → ((ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅)) |
10 | 9 | rexlimiv 2577 | . 2 ⊢ (∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅) |
11 | 4, 10 | sylbi 120 | 1 ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∃wrex 2445 ∅c0 3409 𝒫 cpw 3559 ran crn 4605 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |