ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzn0 GIF version

Theorem uzn0 9738
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
Assertion
Ref Expression
uzn0 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)

Proof of Theorem uzn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzf 9725 . . 3 :ℤ⟶𝒫 ℤ
2 ffn 5473 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
3 fvelrnb 5681 . . 3 (ℤ Fn ℤ → (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀))
41, 2, 3mp2b 8 . 2 (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀)
5 uzid 9736 . . . . 5 (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ𝑘))
6 ne0i 3498 . . . . 5 (𝑘 ∈ (ℤ𝑘) → (ℤ𝑘) ≠ ∅)
75, 6syl 14 . . . 4 (𝑘 ∈ ℤ → (ℤ𝑘) ≠ ∅)
8 neeq1 2413 . . . 4 ((ℤ𝑘) = 𝑀 → ((ℤ𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅))
97, 8syl5ibcom 155 . . 3 (𝑘 ∈ ℤ → ((ℤ𝑘) = 𝑀𝑀 ≠ ∅))
109rexlimiv 2642 . 2 (∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀𝑀 ≠ ∅)
114, 10sylbi 121 1 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  wne 2400  wrex 2509  c0 3491  𝒫 cpw 3649  ran crn 4720   Fn wfn 5313  wf 5314  cfv 5318  cz 9446  cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-neg 8320  df-z 9447  df-uz 9723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator