ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzn0 GIF version

Theorem uzn0 9617
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
Assertion
Ref Expression
uzn0 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)

Proof of Theorem uzn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzf 9604 . . 3 :ℤ⟶𝒫 ℤ
2 ffn 5407 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
3 fvelrnb 5608 . . 3 (ℤ Fn ℤ → (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀))
41, 2, 3mp2b 8 . 2 (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀)
5 uzid 9615 . . . . 5 (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ𝑘))
6 ne0i 3457 . . . . 5 (𝑘 ∈ (ℤ𝑘) → (ℤ𝑘) ≠ ∅)
75, 6syl 14 . . . 4 (𝑘 ∈ ℤ → (ℤ𝑘) ≠ ∅)
8 neeq1 2380 . . . 4 ((ℤ𝑘) = 𝑀 → ((ℤ𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅))
97, 8syl5ibcom 155 . . 3 (𝑘 ∈ ℤ → ((ℤ𝑘) = 𝑀𝑀 ≠ ∅))
109rexlimiv 2608 . 2 (∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀𝑀 ≠ ∅)
114, 10sylbi 121 1 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476  c0 3450  𝒫 cpw 3605  ran crn 4664   Fn wfn 5253  wf 5254  cfv 5258  cz 9326  cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-z 9327  df-uz 9602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator