![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzn0 | GIF version |
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
Ref | Expression |
---|---|
uzn0 | ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 9121 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | ffn 5195 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
3 | fvelrnb 5387 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀)) | |
4 | 1, 2, 3 | mp2b 8 | . 2 ⊢ (𝑀 ∈ ran ℤ≥ ↔ ∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀) |
5 | uzid 9132 | . . . . 5 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ≥‘𝑘)) | |
6 | ne0i 3308 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑘) → (ℤ≥‘𝑘) ≠ ∅) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝑘 ∈ ℤ → (ℤ≥‘𝑘) ≠ ∅) |
8 | neeq1 2275 | . . . 4 ⊢ ((ℤ≥‘𝑘) = 𝑀 → ((ℤ≥‘𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅)) | |
9 | 7, 8 | syl5ibcom 154 | . . 3 ⊢ (𝑘 ∈ ℤ → ((ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅)) |
10 | 9 | rexlimiv 2496 | . 2 ⊢ (∃𝑘 ∈ ℤ (ℤ≥‘𝑘) = 𝑀 → 𝑀 ≠ ∅) |
11 | 4, 10 | sylbi 120 | 1 ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1296 ∈ wcel 1445 ≠ wne 2262 ∃wrex 2371 ∅c0 3302 𝒫 cpw 3449 ran crn 4468 Fn wfn 5044 ⟶wf 5045 ‘cfv 5049 ℤcz 8848 ℤ≥cuz 9118 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-pre-ltirr 7554 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-ov 5693 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-neg 7753 df-z 8849 df-uz 9119 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |