ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprif GIF version

Theorem fvprif 12929
Description: The value of the pair function at an element of 2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
fvprif ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))

Proof of Theorem fvprif
StepHypRef Expression
1 fvpr0o 12927 . . . . 5 (𝐴𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
213ad2ant1 1020 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
32adantr 276 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
4 simpr 110 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → 𝐶 = ∅)
54fveq2d 5559 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅))
64iftrued 3565 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐴)
73, 5, 63eqtr4d 2236 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
8 fvpr1o 12928 . . . . 5 (𝐵𝑊 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
983ad2ant2 1021 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
109adantr 276 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
11 simpr 110 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → 𝐶 = 1o)
1211fveq2d 5559 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o))
13 1n0 6487 . . . . . 6 1o ≠ ∅
1413neii 2366 . . . . 5 ¬ 1o = ∅
1511eqeq1d 2202 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → (𝐶 = ∅ ↔ 1o = ∅))
1614, 15mtbiri 676 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ¬ 𝐶 = ∅)
1716iffalsed 3568 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵)
1810, 12, 173eqtr4d 2236 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
19 elpri 3642 . . . 4 (𝐶 ∈ {∅, 1o} → (𝐶 = ∅ ∨ 𝐶 = 1o))
20 df2o3 6485 . . . 4 2o = {∅, 1o}
2119, 20eleq2s 2288 . . 3 (𝐶 ∈ 2o → (𝐶 = ∅ ∨ 𝐶 = 1o))
22213ad2ant3 1022 . 2 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → (𝐶 = ∅ ∨ 𝐶 = 1o))
237, 18, 22mpjaodan 799 1 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  c0 3447  ifcif 3558  {cpr 3620  cop 3622  cfv 5255  1oc1o 6464  2oc2o 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-1o 6471  df-2o 6472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator