ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprif GIF version

Theorem fvprif 12767
Description: The value of the pair function at an element of 2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
fvprif ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))

Proof of Theorem fvprif
StepHypRef Expression
1 fvpr0o 12765 . . . . 5 (𝐴𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
213ad2ant1 1018 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
32adantr 276 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
4 simpr 110 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → 𝐶 = ∅)
54fveq2d 5521 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅))
64iftrued 3543 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐴)
73, 5, 63eqtr4d 2220 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
8 fvpr1o 12766 . . . . 5 (𝐵𝑊 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
983ad2ant2 1019 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
109adantr 276 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
11 simpr 110 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → 𝐶 = 1o)
1211fveq2d 5521 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o))
13 1n0 6435 . . . . . 6 1o ≠ ∅
1413neii 2349 . . . . 5 ¬ 1o = ∅
1511eqeq1d 2186 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → (𝐶 = ∅ ↔ 1o = ∅))
1614, 15mtbiri 675 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ¬ 𝐶 = ∅)
1716iffalsed 3546 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵)
1810, 12, 173eqtr4d 2220 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
19 elpri 3617 . . . 4 (𝐶 ∈ {∅, 1o} → (𝐶 = ∅ ∨ 𝐶 = 1o))
20 df2o3 6433 . . . 4 2o = {∅, 1o}
2119, 20eleq2s 2272 . . 3 (𝐶 ∈ 2o → (𝐶 = ∅ ∨ 𝐶 = 1o))
22213ad2ant3 1020 . 2 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → (𝐶 = ∅ ∨ 𝐶 = 1o))
237, 18, 22mpjaodan 798 1 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2148  c0 3424  ifcif 3536  {cpr 3595  cop 3597  cfv 5218  1oc1o 6412  2oc2o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-1o 6419  df-2o 6420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator