![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzocatel | GIF version |
Description: Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
fzocatel | ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (0..^𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 500 | . . . 4 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 𝐴 ∈ (0..^𝐵)) | |
2 | fzospliti 9794 | . . . . . 6 ⊢ ((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ (0..^𝐵) ∨ 𝐴 ∈ (𝐵..^(𝐵 + 𝐶)))) | |
3 | 2 | ad2ant2r 496 | . . . . 5 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ (0..^𝐵) ∨ 𝐴 ∈ (𝐵..^(𝐵 + 𝐶)))) |
4 | 3 | ord 684 | . . . 4 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ 𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (𝐵..^(𝐵 + 𝐶)))) |
5 | 1, 4 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ (𝐵..^(𝐵 + 𝐶))) |
6 | simprl 501 | . . 3 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∈ ℤ) | |
7 | fzosubel 9812 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^(𝐵 + 𝐶)) ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ((𝐵 − 𝐵)..^((𝐵 + 𝐶) − 𝐵))) | |
8 | 5, 6, 7 | syl2anc 406 | . 2 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ ((𝐵 − 𝐵)..^((𝐵 + 𝐶) − 𝐵))) |
9 | zcn 8911 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
10 | 9 | subidd 7932 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 − 𝐵) = 0) |
11 | 6, 10 | syl 14 | . . 3 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 − 𝐵) = 0) |
12 | 6 | zcnd 9026 | . . . 4 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∈ ℂ) |
13 | simprr 502 | . . . . 5 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐶 ∈ ℤ) | |
14 | 13 | zcnd 9026 | . . . 4 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐶 ∈ ℂ) |
15 | 12, 14 | pncan2d 7946 | . . 3 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 + 𝐶) − 𝐵) = 𝐶) |
16 | 11, 15 | oveq12d 5724 | . 2 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 − 𝐵)..^((𝐵 + 𝐶) − 𝐵)) = (0..^𝐶)) |
17 | 8, 16 | eleqtrd 2178 | 1 ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (0..^𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 670 = wceq 1299 ∈ wcel 1448 (class class class)co 5706 0cc0 7500 + caddc 7503 − cmin 7804 ℤcz 8906 ..^cfzo 9760 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 df-fz 9632 df-fzo 9761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |