ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzocatel GIF version

Theorem fzocatel 10134
Description: Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
fzocatel (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴𝐵) ∈ (0..^𝐶))

Proof of Theorem fzocatel
StepHypRef Expression
1 simplr 520 . . . 4 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 𝐴 ∈ (0..^𝐵))
2 fzospliti 10111 . . . . . 6 ((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ (0..^𝐵) ∨ 𝐴 ∈ (𝐵..^(𝐵 + 𝐶))))
32ad2ant2r 501 . . . . 5 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ (0..^𝐵) ∨ 𝐴 ∈ (𝐵..^(𝐵 + 𝐶))))
43ord 714 . . . 4 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ 𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (𝐵..^(𝐵 + 𝐶))))
51, 4mpd 13 . . 3 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∈ (𝐵..^(𝐵 + 𝐶)))
6 simprl 521 . . 3 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∈ ℤ)
7 fzosubel 10129 . . 3 ((𝐴 ∈ (𝐵..^(𝐵 + 𝐶)) ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ((𝐵𝐵)..^((𝐵 + 𝐶) − 𝐵)))
85, 6, 7syl2anc 409 . 2 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴𝐵) ∈ ((𝐵𝐵)..^((𝐵 + 𝐶) − 𝐵)))
9 zcn 9196 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
109subidd 8197 . . . 4 (𝐵 ∈ ℤ → (𝐵𝐵) = 0)
116, 10syl 14 . . 3 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵𝐵) = 0)
126zcnd 9314 . . . 4 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∈ ℂ)
13 simprr 522 . . . . 5 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐶 ∈ ℤ)
1413zcnd 9314 . . . 4 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐶 ∈ ℂ)
1512, 14pncan2d 8211 . . 3 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 + 𝐶) − 𝐵) = 𝐶)
1611, 15oveq12d 5860 . 2 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵𝐵)..^((𝐵 + 𝐶) − 𝐵)) = (0..^𝐶))
178, 16eleqtrd 2245 1 (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴𝐵) ∈ (0..^𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  (class class class)co 5842  0cc0 7753   + caddc 7756  cmin 8069  cz 9191  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator