| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nngt1ne1 | GIF version | ||
| Description: A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) | 
| Ref | Expression | 
|---|---|
| nngt1ne1 | ⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1re 8025 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | ltne 8111 | . . 3 ⊢ ((1 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ≠ 1) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ (1 < 𝐴 → 𝐴 ≠ 1) | 
| 4 | df-ne 2368 | . . 3 ⊢ (𝐴 ≠ 1 ↔ ¬ 𝐴 = 1) | |
| 5 | nn1gt1 9024 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) | |
| 6 | 5 | ord 725 | . . 3 ⊢ (𝐴 ∈ ℕ → (¬ 𝐴 = 1 → 1 < 𝐴)) | 
| 7 | 4, 6 | biimtrid 152 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ≠ 1 → 1 < 𝐴)) | 
| 8 | 3, 7 | impbid2 143 | 1 ⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4033 ℝcr 7878 1c1 7880 < clt 8061 ℕcn 8990 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 | 
| This theorem is referenced by: prime 9425 eluz2b3 9678 ncoprmgcdne1b 12257 ncoprmgcdgt1b 12258 | 
| Copyright terms: Public domain | W3C validator |