ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nngt1ne1 GIF version

Theorem nngt1ne1 9071
Description: A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.)
Assertion
Ref Expression
nngt1ne1 (𝐴 ∈ ℕ → (1 < 𝐴𝐴 ≠ 1))

Proof of Theorem nngt1ne1
StepHypRef Expression
1 1re 8071 . . 3 1 ∈ ℝ
2 ltne 8157 . . 3 ((1 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ≠ 1)
31, 2mpan 424 . 2 (1 < 𝐴𝐴 ≠ 1)
4 df-ne 2377 . . 3 (𝐴 ≠ 1 ↔ ¬ 𝐴 = 1)
5 nn1gt1 9070 . . . 4 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))
65ord 726 . . 3 (𝐴 ∈ ℕ → (¬ 𝐴 = 1 → 1 < 𝐴))
74, 6biimtrid 152 . 2 (𝐴 ∈ ℕ → (𝐴 ≠ 1 → 1 < 𝐴))
83, 7impbid2 143 1 (𝐴 ∈ ℕ → (1 < 𝐴𝐴 ≠ 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1373  wcel 2176  wne 2376   class class class wbr 4044  cr 7924  1c1 7926   < clt 8107  cn 9036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-iota 5232  df-fv 5279  df-ov 5947  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-inn 9037
This theorem is referenced by:  prime  9472  eluz2b3  9725  ncoprmgcdne1b  12411  ncoprmgcdgt1b  12412
  Copyright terms: Public domain W3C validator