ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemmo GIF version

Theorem iseqf1olemmo 10597
Description: Lemma for seq3f1o 10609. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemmo.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemmo.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemmo.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
Assertion
Ref Expression
iseqf1olemmo (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemmo
StepHypRef Expression
1 iseqf1olemqf.k . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
21ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqf.j . . . . 5 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
43ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 iseqf1olemmo.a . . . . 5 (𝜑𝐴 ∈ (𝑀...𝑁))
65ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
7 iseqf1olemmo.b . . . . 5 (𝜑𝐵 ∈ (𝑀...𝑁))
87ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
9 iseqf1olemmo.eq . . . . 5 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
109ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
11 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
12 simplr 528 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
13 simpr 110 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
142, 4, 6, 8, 10, 11, 12, 13iseqf1olemab 10594 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
15 simplr 528 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
16 simpr 110 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
1715, 16jca 306 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
181, 3, 5, 7, 9, 11iseqf1olemnab 10593 . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
1918ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
2017, 19pm2.21dd 621 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
21 elfzelz 10100 . . . . . . 7 (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ)
227, 21syl 14 . . . . . 6 (𝜑𝐵 ∈ ℤ)
23 elfzelz 10100 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
241, 23syl 14 . . . . . 6 (𝜑𝐾 ∈ ℤ)
25 f1ocnv 5517 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
26 f1of 5504 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
273, 25, 263syl 17 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2827, 1ffvelcdmd 5698 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
29 elfzelz 10100 . . . . . . 7 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3028, 29syl 14 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ ℤ)
31 fzdcel 10115 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
3222, 24, 30, 31syl3anc 1249 . . . . 5 (𝜑DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
33 exmiddc 837 . . . . 5 (DECID 𝐵 ∈ (𝐾...(𝐽𝐾)) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3432, 33syl 14 . . . 4 (𝜑 → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3534adantr 276 . . 3 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3614, 20, 35mpjaodan 799 . 2 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
37 simpr 110 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
38 simplr 528 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
3937, 38jca 306 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
409eqcomd 2202 . . . . . 6 (𝜑 → (𝑄𝐵) = (𝑄𝐴))
411, 3, 7, 5, 40, 11iseqf1olemnab 10593 . . . . 5 (𝜑 → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4241ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4339, 42pm2.21dd 621 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
441ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
453ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
465ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
477ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
489ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
49 simplr 528 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
50 simpr 110 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
5144, 45, 46, 47, 48, 11, 49, 50iseqf1olemnanb 10595 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
5234adantr 276 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
5343, 51, 52mpjaodan 799 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
54 elfzelz 10100 . . . . 5 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
555, 54syl 14 . . . 4 (𝜑𝐴 ∈ ℤ)
56 fzdcel 10115 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
5755, 24, 30, 56syl3anc 1249 . . 3 (𝜑DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
58 exmiddc 837 . . 3 (DECID 𝐴 ∈ (𝐾...(𝐽𝐾)) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
5957, 58syl 14 . 2 (𝜑 → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
6036, 53, 59mpjaodan 799 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  ifcif 3561  cmpt 4094  ccnv 4662  wf 5254  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  1c1 7880  cmin 8197  cz 9326  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  iseqf1olemqf1o  10598
  Copyright terms: Public domain W3C validator