ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemmo GIF version

Theorem iseqf1olemmo 10727
Description: Lemma for seq3f1o 10739. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemmo.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemmo.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemmo.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
Assertion
Ref Expression
iseqf1olemmo (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemmo
StepHypRef Expression
1 iseqf1olemqf.k . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
21ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqf.j . . . . 5 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
43ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 iseqf1olemmo.a . . . . 5 (𝜑𝐴 ∈ (𝑀...𝑁))
65ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
7 iseqf1olemmo.b . . . . 5 (𝜑𝐵 ∈ (𝑀...𝑁))
87ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
9 iseqf1olemmo.eq . . . . 5 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
109ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
11 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
12 simplr 528 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
13 simpr 110 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
142, 4, 6, 8, 10, 11, 12, 13iseqf1olemab 10724 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
15 simplr 528 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
16 simpr 110 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
1715, 16jca 306 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
181, 3, 5, 7, 9, 11iseqf1olemnab 10723 . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
1918ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
2017, 19pm2.21dd 623 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
21 elfzelz 10221 . . . . . . 7 (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ)
227, 21syl 14 . . . . . 6 (𝜑𝐵 ∈ ℤ)
23 elfzelz 10221 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
241, 23syl 14 . . . . . 6 (𝜑𝐾 ∈ ℤ)
25 f1ocnv 5585 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
26 f1of 5572 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
273, 25, 263syl 17 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2827, 1ffvelcdmd 5771 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
29 elfzelz 10221 . . . . . . 7 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3028, 29syl 14 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ ℤ)
31 fzdcel 10236 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
3222, 24, 30, 31syl3anc 1271 . . . . 5 (𝜑DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
33 exmiddc 841 . . . . 5 (DECID 𝐵 ∈ (𝐾...(𝐽𝐾)) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3432, 33syl 14 . . . 4 (𝜑 → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3534adantr 276 . . 3 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3614, 20, 35mpjaodan 803 . 2 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
37 simpr 110 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
38 simplr 528 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
3937, 38jca 306 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
409eqcomd 2235 . . . . . 6 (𝜑 → (𝑄𝐵) = (𝑄𝐴))
411, 3, 7, 5, 40, 11iseqf1olemnab 10723 . . . . 5 (𝜑 → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4241ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4339, 42pm2.21dd 623 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
441ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
453ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
465ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
477ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
489ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
49 simplr 528 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
50 simpr 110 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
5144, 45, 46, 47, 48, 11, 49, 50iseqf1olemnanb 10725 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
5234adantr 276 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
5343, 51, 52mpjaodan 803 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
54 elfzelz 10221 . . . . 5 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
555, 54syl 14 . . . 4 (𝜑𝐴 ∈ ℤ)
56 fzdcel 10236 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
5755, 24, 30, 56syl3anc 1271 . . 3 (𝜑DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
58 exmiddc 841 . . 3 (DECID 𝐴 ∈ (𝐾...(𝐽𝐾)) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
5957, 58syl 14 . 2 (𝜑 → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
6036, 53, 59mpjaodan 803 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  ifcif 3602  cmpt 4145  ccnv 4718  wf 5314  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6001  1c1 8000  cmin 8317  cz 9446  ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  iseqf1olemqf1o  10728
  Copyright terms: Public domain W3C validator