Proof of Theorem iseqf1olemmo
Step | Hyp | Ref
| Expression |
1 | | iseqf1olemqf.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
2 | 1 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐾 ∈ (𝑀...𝑁)) |
3 | | iseqf1olemqf.j |
. . . . 5
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
4 | 3 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
5 | | iseqf1olemmo.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
6 | 5 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝑀...𝑁)) |
7 | | iseqf1olemmo.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
8 | 7 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝑀...𝑁)) |
9 | | iseqf1olemmo.eq |
. . . . 5
⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
10 | 9 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
11 | | iseqf1olemqf.q |
. . . 4
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
12 | | simplr 520 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
13 | | simpr 109 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
14 | 2, 4, 6, 8, 10, 11, 12, 13 | iseqf1olemab 10424 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
15 | | simplr 520 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
16 | | simpr 109 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
17 | 15, 16 | jca 304 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
18 | 1, 3, 5, 7, 9, 11 | iseqf1olemnab 10423 |
. . . . 5
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
19 | 18 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
20 | 17, 19 | pm2.21dd 610 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
21 | | elfzelz 9960 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ) |
22 | 7, 21 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℤ) |
23 | | elfzelz 9960 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
24 | 1, 23 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) |
25 | | f1ocnv 5445 |
. . . . . . . . 9
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
26 | | f1of 5432 |
. . . . . . . . 9
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
27 | 3, 25, 26 | 3syl 17 |
. . . . . . . 8
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
28 | 27, 1 | ffvelrnd 5621 |
. . . . . . 7
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
29 | | elfzelz 9960 |
. . . . . . 7
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
30 | 28, 29 | syl 14 |
. . . . . 6
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
31 | | fzdcel 9975 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐵
∈ (𝐾...(◡𝐽‘𝐾))) |
32 | 22, 24, 30, 31 | syl3anc 1228 |
. . . . 5
⊢ (𝜑 → DECID 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
33 | | exmiddc 826 |
. . . . 5
⊢
(DECID 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
34 | 32, 33 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
35 | 34 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
36 | 14, 20, 35 | mpjaodan 788 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
37 | | simpr 109 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
38 | | simplr 520 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
39 | 37, 38 | jca 304 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
40 | 9 | eqcomd 2171 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝐵) = (𝑄‘𝐴)) |
41 | 1, 3, 7, 5, 40, 11 | iseqf1olemnab 10423 |
. . . . 5
⊢ (𝜑 → ¬ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
42 | 41 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
43 | 39, 42 | pm2.21dd 610 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
44 | 1 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐾 ∈ (𝑀...𝑁)) |
45 | 3 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
46 | 5 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝑀...𝑁)) |
47 | 7 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝑀...𝑁)) |
48 | 9 | ad2antrr 480 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
49 | | simplr 520 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
50 | | simpr 109 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
51 | 44, 45, 46, 47, 48, 11, 49, 50 | iseqf1olemnanb 10425 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
52 | 34 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
53 | 43, 51, 52 | mpjaodan 788 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
54 | | elfzelz 9960 |
. . . . 5
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) |
55 | 5, 54 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℤ) |
56 | | fzdcel 9975 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐴
∈ (𝐾...(◡𝐽‘𝐾))) |
57 | 55, 24, 30, 56 | syl3anc 1228 |
. . 3
⊢ (𝜑 → DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
58 | | exmiddc 826 |
. . 3
⊢
(DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
59 | 57, 58 | syl 14 |
. 2
⊢ (𝜑 → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
60 | 36, 53, 59 | mpjaodan 788 |
1
⊢ (𝜑 → 𝐴 = 𝐵) |