Proof of Theorem iseqf1olemmo
| Step | Hyp | Ref
| Expression |
| 1 | | iseqf1olemqf.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 2 | 1 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐾 ∈ (𝑀...𝑁)) |
| 3 | | iseqf1olemqf.j |
. . . . 5
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 4 | 3 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 5 | | iseqf1olemmo.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
| 6 | 5 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝑀...𝑁)) |
| 7 | | iseqf1olemmo.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
| 8 | 7 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝑀...𝑁)) |
| 9 | | iseqf1olemmo.eq |
. . . . 5
⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 10 | 9 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 11 | | iseqf1olemqf.q |
. . . 4
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| 12 | | simplr 528 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 13 | | simpr 110 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 14 | 2, 4, 6, 8, 10, 11, 12, 13 | iseqf1olemab 10611 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
| 15 | | simplr 528 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 16 | | simpr 110 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 17 | 15, 16 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 18 | 1, 3, 5, 7, 9, 11 | iseqf1olemnab 10610 |
. . . . 5
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 19 | 18 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 20 | 17, 19 | pm2.21dd 621 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
| 21 | | elfzelz 10117 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ) |
| 22 | 7, 21 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 23 | | elfzelz 10117 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
| 24 | 1, 23 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 25 | | f1ocnv 5520 |
. . . . . . . . 9
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 26 | | f1of 5507 |
. . . . . . . . 9
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 27 | 3, 25, 26 | 3syl 17 |
. . . . . . . 8
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 28 | 27, 1 | ffvelcdmd 5701 |
. . . . . . 7
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 29 | | elfzelz 10117 |
. . . . . . 7
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
| 30 | 28, 29 | syl 14 |
. . . . . 6
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
| 31 | | fzdcel 10132 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐵
∈ (𝐾...(◡𝐽‘𝐾))) |
| 32 | 22, 24, 30, 31 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → DECID 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 33 | | exmiddc 837 |
. . . . 5
⊢
(DECID 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 34 | 32, 33 | syl 14 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 35 | 34 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 36 | 14, 20, 35 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
| 37 | | simpr 110 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 38 | | simplr 528 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 39 | 37, 38 | jca 306 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 40 | 9 | eqcomd 2202 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝐵) = (𝑄‘𝐴)) |
| 41 | 1, 3, 7, 5, 40, 11 | iseqf1olemnab 10610 |
. . . . 5
⊢ (𝜑 → ¬ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 42 | 41 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 43 | 39, 42 | pm2.21dd 621 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
| 44 | 1 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐾 ∈ (𝑀...𝑁)) |
| 45 | 3 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 46 | 5 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝑀...𝑁)) |
| 47 | 7 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝑀...𝑁)) |
| 48 | 9 | ad2antrr 488 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝑄‘𝐴) = (𝑄‘𝐵)) |
| 49 | | simplr 528 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 50 | | simpr 110 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 51 | 44, 45, 46, 47, 48, 11, 49, 50 | iseqf1olemnanb 10612 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
| 52 | 34 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 53 | 43, 51, 52 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) |
| 54 | | elfzelz 10117 |
. . . . 5
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) |
| 55 | 5, 54 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 56 | | fzdcel 10132 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐴
∈ (𝐾...(◡𝐽‘𝐾))) |
| 57 | 55, 24, 30, 56 | syl3anc 1249 |
. . 3
⊢ (𝜑 → DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
| 58 | | exmiddc 837 |
. . 3
⊢
(DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 59 | 57, 58 | syl 14 |
. 2
⊢ (𝜑 → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) |
| 60 | 36, 53, 59 | mpjaodan 799 |
1
⊢ (𝜑 → 𝐴 = 𝐵) |