Proof of Theorem iseqf1olemmo
| Step | Hyp | Ref
 | Expression | 
| 1 |   | iseqf1olemqf.k | 
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | 
| 2 | 1 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐾 ∈ (𝑀...𝑁)) | 
| 3 |   | iseqf1olemqf.j | 
. . . . 5
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 4 | 3 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 5 |   | iseqf1olemmo.a | 
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | 
| 6 | 5 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝑀...𝑁)) | 
| 7 |   | iseqf1olemmo.b | 
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) | 
| 8 | 7 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝑀...𝑁)) | 
| 9 |   | iseqf1olemmo.eq | 
. . . . 5
⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) | 
| 10 | 9 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝑄‘𝐴) = (𝑄‘𝐵)) | 
| 11 |   | iseqf1olemqf.q | 
. . . 4
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | 
| 12 |   | simplr 528 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 13 |   | simpr 110 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 14 | 2, 4, 6, 8, 10, 11, 12, 13 | iseqf1olemab 10594 | 
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) | 
| 15 |   | simplr 528 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 16 |   | simpr 110 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 17 | 15, 16 | jca 306 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 18 | 1, 3, 5, 7, 9, 11 | iseqf1olemnab 10593 | 
. . . . 5
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 19 | 18 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 20 | 17, 19 | pm2.21dd 621 | 
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) | 
| 21 |   | elfzelz 10100 | 
. . . . . . 7
⊢ (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ) | 
| 22 | 7, 21 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| 23 |   | elfzelz 10100 | 
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | 
| 24 | 1, 23 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℤ) | 
| 25 |   | f1ocnv 5517 | 
. . . . . . . . 9
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 26 |   | f1of 5504 | 
. . . . . . . . 9
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 27 | 3, 25, 26 | 3syl 17 | 
. . . . . . . 8
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | 
| 28 | 27, 1 | ffvelcdmd 5698 | 
. . . . . . 7
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) | 
| 29 |   | elfzelz 10100 | 
. . . . . . 7
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) | 
| 30 | 28, 29 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) | 
| 31 |   | fzdcel 10115 | 
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐵
∈ (𝐾...(◡𝐽‘𝐾))) | 
| 32 | 22, 24, 30, 31 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → DECID 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 33 |   | exmiddc 837 | 
. . . . 5
⊢
(DECID 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 34 | 32, 33 | syl 14 | 
. . . 4
⊢ (𝜑 → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 35 | 34 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 36 | 14, 20, 35 | mpjaodan 799 | 
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) | 
| 37 |   | simpr 110 | 
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 38 |   | simplr 528 | 
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 39 | 37, 38 | jca 306 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 40 | 9 | eqcomd 2202 | 
. . . . . 6
⊢ (𝜑 → (𝑄‘𝐵) = (𝑄‘𝐴)) | 
| 41 | 1, 3, 7, 5, 40, 11 | iseqf1olemnab 10593 | 
. . . . 5
⊢ (𝜑 → ¬ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 42 | 41 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 43 | 39, 42 | pm2.21dd 621 | 
. . 3
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) | 
| 44 | 1 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐾 ∈ (𝑀...𝑁)) | 
| 45 | 3 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | 
| 46 | 5 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 ∈ (𝑀...𝑁)) | 
| 47 | 7 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐵 ∈ (𝑀...𝑁)) | 
| 48 | 9 | ad2antrr 488 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝑄‘𝐴) = (𝑄‘𝐵)) | 
| 49 |   | simplr 528 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 50 |   | simpr 110 | 
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 51 | 44, 45, 46, 47, 48, 11, 49, 50 | iseqf1olemnanb 10595 | 
. . 3
⊢ (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) | 
| 52 | 34 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → (𝐵 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 53 | 43, 51, 52 | mpjaodan 799 | 
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) → 𝐴 = 𝐵) | 
| 54 |   | elfzelz 10100 | 
. . . . 5
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ) | 
| 55 | 5, 54 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| 56 |   | fzdcel 10115 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐴
∈ (𝐾...(◡𝐽‘𝐾))) | 
| 57 | 55, 24, 30, 56 | syl3anc 1249 | 
. . 3
⊢ (𝜑 → DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | 
| 58 |   | exmiddc 837 | 
. . 3
⊢
(DECID 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 59 | 57, 58 | syl 14 | 
. 2
⊢ (𝜑 → (𝐴 ∈ (𝐾...(◡𝐽‘𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | 
| 60 | 36, 53, 59 | mpjaodan 799 | 
1
⊢ (𝜑 → 𝐴 = 𝐵) |