ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemmo GIF version

Theorem iseqf1olemmo 10652
Description: Lemma for seq3f1o 10664. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemmo.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemmo.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemmo.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
Assertion
Ref Expression
iseqf1olemmo (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemmo
StepHypRef Expression
1 iseqf1olemqf.k . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
21ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqf.j . . . . 5 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
43ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 iseqf1olemmo.a . . . . 5 (𝜑𝐴 ∈ (𝑀...𝑁))
65ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
7 iseqf1olemmo.b . . . . 5 (𝜑𝐵 ∈ (𝑀...𝑁))
87ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
9 iseqf1olemmo.eq . . . . 5 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
109ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
11 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
12 simplr 528 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
13 simpr 110 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
142, 4, 6, 8, 10, 11, 12, 13iseqf1olemab 10649 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
15 simplr 528 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝐾...(𝐽𝐾)))
16 simpr 110 . . . . 5 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
1715, 16jca 306 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
181, 3, 5, 7, 9, 11iseqf1olemnab 10648 . . . . 5 (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
1918ad2antrr 488 . . . 4 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
2017, 19pm2.21dd 621 . . 3 (((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
21 elfzelz 10149 . . . . . . 7 (𝐵 ∈ (𝑀...𝑁) → 𝐵 ∈ ℤ)
227, 21syl 14 . . . . . 6 (𝜑𝐵 ∈ ℤ)
23 elfzelz 10149 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
241, 23syl 14 . . . . . 6 (𝜑𝐾 ∈ ℤ)
25 f1ocnv 5537 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
26 f1of 5524 . . . . . . . . 9 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
273, 25, 263syl 17 . . . . . . . 8 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
2827, 1ffvelcdmd 5718 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
29 elfzelz 10149 . . . . . . 7 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3028, 29syl 14 . . . . . 6 (𝜑 → (𝐽𝐾) ∈ ℤ)
31 fzdcel 10164 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
3222, 24, 30, 31syl3anc 1250 . . . . 5 (𝜑DECID 𝐵 ∈ (𝐾...(𝐽𝐾)))
33 exmiddc 838 . . . . 5 (DECID 𝐵 ∈ (𝐾...(𝐽𝐾)) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3432, 33syl 14 . . . 4 (𝜑 → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3534adantr 276 . . 3 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
3614, 20, 35mpjaodan 800 . 2 ((𝜑𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
37 simpr 110 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝐾...(𝐽𝐾)))
38 simplr 528 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
3937, 38jca 306 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
409eqcomd 2211 . . . . . 6 (𝜑 → (𝑄𝐵) = (𝑄𝐴))
411, 3, 7, 5, 40, 11iseqf1olemnab 10648 . . . . 5 (𝜑 → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4241ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ (𝐵 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
4339, 42pm2.21dd 621 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
441ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐾 ∈ (𝑀...𝑁))
453ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
465ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 ∈ (𝑀...𝑁))
477ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐵 ∈ (𝑀...𝑁))
489ad2antrr 488 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → (𝑄𝐴) = (𝑄𝐵))
49 simplr 528 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
50 simpr 110 . . . 4 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
5144, 45, 46, 47, 48, 11, 49, 50iseqf1olemnanb 10650 . . 3 (((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
5234adantr 276 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → (𝐵 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
5343, 51, 52mpjaodan 800 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))) → 𝐴 = 𝐵)
54 elfzelz 10149 . . . . 5 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ ℤ)
555, 54syl 14 . . . 4 (𝜑𝐴 ∈ ℤ)
56 fzdcel 10164 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
5755, 24, 30, 56syl3anc 1250 . . 3 (𝜑DECID 𝐴 ∈ (𝐾...(𝐽𝐾)))
58 exmiddc 838 . . 3 (DECID 𝐴 ∈ (𝐾...(𝐽𝐾)) → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
5957, 58syl 14 . 2 (𝜑 → (𝐴 ∈ (𝐾...(𝐽𝐾)) ∨ ¬ 𝐴 ∈ (𝐾...(𝐽𝐾))))
6036, 53, 59mpjaodan 800 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  ifcif 3571  cmpt 4106  ccnv 4675  wf 5268  1-1-ontowf1o 5271  cfv 5272  (class class class)co 5946  1c1 7928  cmin 8245  cz 9374  ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  iseqf1olemqf1o  10653
  Copyright terms: Public domain W3C validator