Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle GIF version

Theorem cnplimclemle 12997
 Description: Lemma for cnplimccntop 12999. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
cnplimclemle.e (𝜑𝐸 ∈ ℝ+)
cnplimclemle.d (𝜑𝐷 ∈ ℝ+)
cnplimclemle.z (𝜑𝑍𝐴)
cnplimclemle.im ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
cnplimclemle.zd (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
Assertion
Ref Expression
cnplimclemle (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 109 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2 cnplimclemr.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
3 cnplimclemle.z . . . . . . . 8 (𝜑𝑍𝐴)
42, 3ffvelrnd 5600 . . . . . . 7 (𝜑 → (𝐹𝑍) ∈ ℂ)
5 cnplimclemr.b . . . . . . . 8 (𝜑𝐵𝐴)
62, 5ffvelrnd 5600 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℂ)
74, 6subcld 8169 . . . . . 6 (𝜑 → ((𝐹𝑍) − (𝐹𝐵)) ∈ ℂ)
87abscld 11063 . . . . 5 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
98adantr 274 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
10 cnplimclemle.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1110rphalfcld 9598 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ+)
1211rpred 9585 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
1312adantr 274 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ)
144adantr 274 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) ∈ ℂ)
151adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
16 simpll 519 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝜑)
1716, 8syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
1816, 12syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) ∈ ℝ)
19 simpr 109 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝑍 # 𝐵)
20 cnplimclemle.zd . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
2116, 20syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘(𝑍𝐵)) < 𝐷)
22 cnplimclemle.im . . . . . . . . . . . 12 ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2316, 19, 21, 22syl3anc 1220 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2417, 18, 23ltnsymd 7978 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2515, 24pm2.65da 651 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ 𝑍 # 𝐵)
26 cnplimclemr.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
2726, 3sseldd 3129 . . . . . . . . . 10 (𝜑𝑍 ∈ ℂ)
2826, 5sseldd 3129 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2928adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝐵 ∈ ℂ)
30 apti 8480 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3127, 29, 30syl2an2r 585 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3225, 31mpbird 166 . . . . . . . 8 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝑍 = 𝐵)
3332fveq2d 5469 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) = (𝐹𝐵))
3414, 33subeq0bd 8237 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ((𝐹𝑍) − (𝐹𝐵)) = 0)
3534abs00bd 10948 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) = 0)
3611adantr 274 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ+)
3736rpgt0d 9588 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 0 < (𝐸 / 2))
3835, 37eqbrtrd 3986 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
399, 13, 38ltnsymd 7978 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
401, 39pm2.21dd 610 . 2 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
41 simpr 109 . 2 ((𝜑 ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
42 rphalflt 9572 . . . 4 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
4310, 42syl 14 . . 3 (𝜑 → (𝐸 / 2) < 𝐸)
4410rpred 9585 . . . 4 (𝜑𝐸 ∈ ℝ)
45 axltwlin 7928 . . . 4 (((𝐸 / 2) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ) → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4612, 44, 8, 45syl3anc 1220 . . 3 (𝜑 → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4743, 46mpd 13 . 2 (𝜑 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸))
4840, 41, 47mpjaodan 788 1 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698   ∧ w3a 963   = wceq 1335   ∈ wcel 2128   ⊆ wss 3102   class class class wbr 3965   ∘ ccom 4587  ⟶wf 5163  ‘cfv 5167  (class class class)co 5818  ℂcc 7713  ℝcr 7714  0cc0 7715   < clt 7895   − cmin 8029   # cap 8439   / cdiv 8528  2c2 8867  ℝ+crp 9542  abscabs 10879   ↾t crest 12311  MetOpencmopn 12345   limℂ climc 12983 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-rp 9543  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881 This theorem is referenced by:  cnplimclemr  12998
 Copyright terms: Public domain W3C validator