ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle GIF version

Theorem cnplimclemle 15342
Description: Lemma for cnplimccntop 15344. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
cnplimclemle.e (𝜑𝐸 ∈ ℝ+)
cnplimclemle.d (𝜑𝐷 ∈ ℝ+)
cnplimclemle.z (𝜑𝑍𝐴)
cnplimclemle.im ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
cnplimclemle.zd (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
Assertion
Ref Expression
cnplimclemle (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 110 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2 cnplimclemr.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
3 cnplimclemle.z . . . . . . . 8 (𝜑𝑍𝐴)
42, 3ffvelcdmd 5771 . . . . . . 7 (𝜑 → (𝐹𝑍) ∈ ℂ)
5 cnplimclemr.b . . . . . . . 8 (𝜑𝐵𝐴)
62, 5ffvelcdmd 5771 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℂ)
74, 6subcld 8457 . . . . . 6 (𝜑 → ((𝐹𝑍) − (𝐹𝐵)) ∈ ℂ)
87abscld 11692 . . . . 5 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
98adantr 276 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
10 cnplimclemle.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1110rphalfcld 9905 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ+)
1211rpred 9892 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
1312adantr 276 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ)
144adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) ∈ ℂ)
151adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
16 simpll 527 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝜑)
1716, 8syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
1816, 12syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) ∈ ℝ)
19 simpr 110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝑍 # 𝐵)
20 cnplimclemle.zd . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
2116, 20syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘(𝑍𝐵)) < 𝐷)
22 cnplimclemle.im . . . . . . . . . . . 12 ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2316, 19, 21, 22syl3anc 1271 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2417, 18, 23ltnsymd 8266 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2515, 24pm2.65da 665 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ 𝑍 # 𝐵)
26 cnplimclemr.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
2726, 3sseldd 3225 . . . . . . . . . 10 (𝜑𝑍 ∈ ℂ)
2826, 5sseldd 3225 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2928adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝐵 ∈ ℂ)
30 apti 8769 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3127, 29, 30syl2an2r 597 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3225, 31mpbird 167 . . . . . . . 8 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝑍 = 𝐵)
3332fveq2d 5631 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) = (𝐹𝐵))
3414, 33subeq0bd 8525 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ((𝐹𝑍) − (𝐹𝐵)) = 0)
3534abs00bd 11577 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) = 0)
3611adantr 276 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ+)
3736rpgt0d 9895 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 0 < (𝐸 / 2))
3835, 37eqbrtrd 4105 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
399, 13, 38ltnsymd 8266 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
401, 39pm2.21dd 623 . 2 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
41 simpr 110 . 2 ((𝜑 ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
42 rphalflt 9879 . . . 4 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
4310, 42syl 14 . . 3 (𝜑 → (𝐸 / 2) < 𝐸)
4410rpred 9892 . . . 4 (𝜑𝐸 ∈ ℝ)
45 axltwlin 8214 . . . 4 (((𝐸 / 2) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ) → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4612, 44, 8, 45syl3anc 1271 . . 3 (𝜑 → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4743, 46mpd 13 . 2 (𝜑 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸))
4840, 41, 47mpjaodan 803 1 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wss 3197   class class class wbr 4083  ccom 4723  wf 5314  cfv 5318  (class class class)co 6001  cc 7997  cr 7998  0cc0 7999   < clt 8181  cmin 8317   # cap 8728   / cdiv 8819  2c2 9161  +crp 9849  abscabs 11508  t crest 13272  MetOpencmopn 14505   lim climc 15328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  cnplimclemr  15343
  Copyright terms: Public domain W3C validator