Proof of Theorem cnplimclemle
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . 3
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) | 
| 2 |   | cnplimclemr.f | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | 
| 3 |   | cnplimclemle.z | 
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝐴) | 
| 4 | 2, 3 | ffvelcdmd 5698 | 
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑍) ∈ ℂ) | 
| 5 |   | cnplimclemr.b | 
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| 6 | 2, 5 | ffvelcdmd 5698 | 
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℂ) | 
| 7 | 4, 6 | subcld 8337 | 
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝑍) − (𝐹‘𝐵)) ∈ ℂ) | 
| 8 | 7 | abscld 11346 | 
. . . . 5
⊢ (𝜑 → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) ∈ ℝ) | 
| 9 | 8 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) ∈ ℝ) | 
| 10 |   | cnplimclemle.e | 
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℝ+) | 
| 11 | 10 | rphalfcld 9784 | 
. . . . . 6
⊢ (𝜑 → (𝐸 / 2) ∈
ℝ+) | 
| 12 | 11 | rpred 9771 | 
. . . . 5
⊢ (𝜑 → (𝐸 / 2) ∈ ℝ) | 
| 13 | 12 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (𝐸 / 2) ∈ ℝ) | 
| 14 | 4 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (𝐹‘𝑍) ∈ ℂ) | 
| 15 | 1 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) | 
| 16 |   | simpll 527 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → 𝜑) | 
| 17 | 16, 8 | syl 14 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) ∈ ℝ) | 
| 18 | 16, 12 | syl 14 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) ∈ ℝ) | 
| 19 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → 𝑍 # 𝐵) | 
| 20 |   | cnplimclemle.zd | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (abs‘(𝑍 − 𝐵)) < 𝐷) | 
| 21 | 16, 20 | syl 14 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘(𝑍 − 𝐵)) < 𝐷) | 
| 22 |   | cnplimclemle.im | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 # 𝐵 ∧ (abs‘(𝑍 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < (𝐸 / 2)) | 
| 23 | 16, 19, 21, 22 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < (𝐸 / 2)) | 
| 24 | 17, 18, 23 | ltnsymd 8146 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) ∧ 𝑍 # 𝐵) → ¬ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) | 
| 25 | 15, 24 | pm2.65da 662 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → ¬ 𝑍 # 𝐵) | 
| 26 |   | cnplimclemr.a | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ℂ) | 
| 27 | 26, 3 | sseldd 3184 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ ℂ) | 
| 28 | 26, 5 | sseldd 3184 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| 29 | 28 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → 𝐵 ∈ ℂ) | 
| 30 |   | apti 8649 | 
. . . . . . . . . 10
⊢ ((𝑍 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵)) | 
| 31 | 27, 29, 30 | syl2an2r 595 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵)) | 
| 32 | 25, 31 | mpbird 167 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → 𝑍 = 𝐵) | 
| 33 | 32 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (𝐹‘𝑍) = (𝐹‘𝐵)) | 
| 34 | 14, 33 | subeq0bd 8405 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → ((𝐹‘𝑍) − (𝐹‘𝐵)) = 0) | 
| 35 | 34 | abs00bd 11231 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) = 0) | 
| 36 | 11 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (𝐸 / 2) ∈
ℝ+) | 
| 37 | 36 | rpgt0d 9774 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → 0 < (𝐸 / 2)) | 
| 38 | 35, 37 | eqbrtrd 4055 | 
. . . 4
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < (𝐸 / 2)) | 
| 39 | 9, 13, 38 | ltnsymd 8146 | 
. . 3
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → ¬ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) | 
| 40 | 1, 39 | pm2.21dd 621 | 
. 2
⊢ ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵)))) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) | 
| 41 |   | simpr 110 | 
. 2
⊢ ((𝜑 ∧ (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) | 
| 42 |   | rphalflt 9758 | 
. . . 4
⊢ (𝐸 ∈ ℝ+
→ (𝐸 / 2) < 𝐸) | 
| 43 | 10, 42 | syl 14 | 
. . 3
⊢ (𝜑 → (𝐸 / 2) < 𝐸) | 
| 44 | 10 | rpred 9771 | 
. . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) | 
| 45 |   | axltwlin 8094 | 
. . . 4
⊢ (((𝐸 / 2) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧
(abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) ∈ ℝ) → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) ∨ (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸))) | 
| 46 | 12, 44, 8, 45 | syl3anc 1249 | 
. . 3
⊢ (𝜑 → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) ∨ (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸))) | 
| 47 | 43, 46 | mpd 13 | 
. 2
⊢ (𝜑 → ((𝐸 / 2) < (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) ∨ (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸)) | 
| 48 | 40, 41, 47 | mpjaodan 799 | 
1
⊢ (𝜑 → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) |