ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle GIF version

Theorem cnplimclemle 12806
Description: Lemma for cnplimccntop 12808. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
cnplimclemle.e (𝜑𝐸 ∈ ℝ+)
cnplimclemle.d (𝜑𝐷 ∈ ℝ+)
cnplimclemle.z (𝜑𝑍𝐴)
cnplimclemle.im ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
cnplimclemle.zd (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
Assertion
Ref Expression
cnplimclemle (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 109 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2 cnplimclemr.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
3 cnplimclemle.z . . . . . . . 8 (𝜑𝑍𝐴)
42, 3ffvelrnd 5556 . . . . . . 7 (𝜑 → (𝐹𝑍) ∈ ℂ)
5 cnplimclemr.b . . . . . . . 8 (𝜑𝐵𝐴)
62, 5ffvelrnd 5556 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℂ)
74, 6subcld 8073 . . . . . 6 (𝜑 → ((𝐹𝑍) − (𝐹𝐵)) ∈ ℂ)
87abscld 10953 . . . . 5 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
98adantr 274 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
10 cnplimclemle.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1110rphalfcld 9496 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ+)
1211rpred 9483 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
1312adantr 274 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ)
144adantr 274 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) ∈ ℂ)
151adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
16 simpll 518 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝜑)
1716, 8syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
1816, 12syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) ∈ ℝ)
19 simpr 109 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝑍 # 𝐵)
20 cnplimclemle.zd . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
2116, 20syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘(𝑍𝐵)) < 𝐷)
22 cnplimclemle.im . . . . . . . . . . . 12 ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2316, 19, 21, 22syl3anc 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2417, 18, 23ltnsymd 7882 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2515, 24pm2.65da 650 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ 𝑍 # 𝐵)
26 cnplimclemr.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
2726, 3sseldd 3098 . . . . . . . . . 10 (𝜑𝑍 ∈ ℂ)
2826, 5sseldd 3098 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2928adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝐵 ∈ ℂ)
30 apti 8384 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3127, 29, 30syl2an2r 584 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3225, 31mpbird 166 . . . . . . . 8 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝑍 = 𝐵)
3332fveq2d 5425 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) = (𝐹𝐵))
3414, 33subeq0bd 8141 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ((𝐹𝑍) − (𝐹𝐵)) = 0)
3534abs00bd 10838 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) = 0)
3611adantr 274 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ+)
3736rpgt0d 9486 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 0 < (𝐸 / 2))
3835, 37eqbrtrd 3950 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
399, 13, 38ltnsymd 7882 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
401, 39pm2.21dd 609 . 2 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
41 simpr 109 . 2 ((𝜑 ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
42 rphalflt 9471 . . . 4 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
4310, 42syl 14 . . 3 (𝜑 → (𝐸 / 2) < 𝐸)
4410rpred 9483 . . . 4 (𝜑𝐸 ∈ ℝ)
45 axltwlin 7832 . . . 4 (((𝐸 / 2) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ) → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4612, 44, 8, 45syl3anc 1216 . . 3 (𝜑 → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4743, 46mpd 13 . 2 (𝜑 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸))
4840, 41, 47mpjaodan 787 1 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wss 3071   class class class wbr 3929  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620   < clt 7800  cmin 7933   # cap 8343   / cdiv 8432  2c2 8771  +crp 9441  abscabs 10769  t crest 12120  MetOpencmopn 12154   lim climc 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  cnplimclemr  12807
  Copyright terms: Public domain W3C validator