ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle GIF version

Theorem cnplimclemle 14904
Description: Lemma for cnplimccntop 14906. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
cnplimclemle.e (𝜑𝐸 ∈ ℝ+)
cnplimclemle.d (𝜑𝐷 ∈ ℝ+)
cnplimclemle.z (𝜑𝑍𝐴)
cnplimclemle.im ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
cnplimclemle.zd (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
Assertion
Ref Expression
cnplimclemle (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 110 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2 cnplimclemr.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
3 cnplimclemle.z . . . . . . . 8 (𝜑𝑍𝐴)
42, 3ffvelcdmd 5698 . . . . . . 7 (𝜑 → (𝐹𝑍) ∈ ℂ)
5 cnplimclemr.b . . . . . . . 8 (𝜑𝐵𝐴)
62, 5ffvelcdmd 5698 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℂ)
74, 6subcld 8337 . . . . . 6 (𝜑 → ((𝐹𝑍) − (𝐹𝐵)) ∈ ℂ)
87abscld 11346 . . . . 5 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
98adantr 276 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
10 cnplimclemle.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1110rphalfcld 9784 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ+)
1211rpred 9771 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
1312adantr 276 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ)
144adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) ∈ ℂ)
151adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
16 simpll 527 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝜑)
1716, 8syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
1816, 12syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) ∈ ℝ)
19 simpr 110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝑍 # 𝐵)
20 cnplimclemle.zd . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
2116, 20syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘(𝑍𝐵)) < 𝐷)
22 cnplimclemle.im . . . . . . . . . . . 12 ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2316, 19, 21, 22syl3anc 1249 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2417, 18, 23ltnsymd 8146 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2515, 24pm2.65da 662 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ 𝑍 # 𝐵)
26 cnplimclemr.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
2726, 3sseldd 3184 . . . . . . . . . 10 (𝜑𝑍 ∈ ℂ)
2826, 5sseldd 3184 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2928adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝐵 ∈ ℂ)
30 apti 8649 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3127, 29, 30syl2an2r 595 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3225, 31mpbird 167 . . . . . . . 8 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝑍 = 𝐵)
3332fveq2d 5562 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) = (𝐹𝐵))
3414, 33subeq0bd 8405 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ((𝐹𝑍) − (𝐹𝐵)) = 0)
3534abs00bd 11231 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) = 0)
3611adantr 276 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ+)
3736rpgt0d 9774 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 0 < (𝐸 / 2))
3835, 37eqbrtrd 4055 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
399, 13, 38ltnsymd 8146 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
401, 39pm2.21dd 621 . 2 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
41 simpr 110 . 2 ((𝜑 ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
42 rphalflt 9758 . . . 4 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
4310, 42syl 14 . . 3 (𝜑 → (𝐸 / 2) < 𝐸)
4410rpred 9771 . . . 4 (𝜑𝐸 ∈ ℝ)
45 axltwlin 8094 . . . 4 (((𝐸 / 2) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ) → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4612, 44, 8, 45syl3anc 1249 . . 3 (𝜑 → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4743, 46mpd 13 . 2 (𝜑 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸))
4840, 41, 47mpjaodan 799 1 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4033  ccom 4667  wf 5254  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879   < clt 8061  cmin 8197   # cap 8608   / cdiv 8699  2c2 9041  +crp 9728  abscabs 11162  t crest 12910  MetOpencmopn 14097   lim climc 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  cnplimclemr  14905
  Copyright terms: Public domain W3C validator