ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle GIF version

Theorem cnplimclemle 13431
Description: Lemma for cnplimccntop 13433. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
cnplimclemle.e (𝜑𝐸 ∈ ℝ+)
cnplimclemle.d (𝜑𝐷 ∈ ℝ+)
cnplimclemle.z (𝜑𝑍𝐴)
cnplimclemle.im ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
cnplimclemle.zd (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
Assertion
Ref Expression
cnplimclemle (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 109 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2 cnplimclemr.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
3 cnplimclemle.z . . . . . . . 8 (𝜑𝑍𝐴)
42, 3ffvelrnd 5632 . . . . . . 7 (𝜑 → (𝐹𝑍) ∈ ℂ)
5 cnplimclemr.b . . . . . . . 8 (𝜑𝐵𝐴)
62, 5ffvelrnd 5632 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℂ)
74, 6subcld 8230 . . . . . 6 (𝜑 → ((𝐹𝑍) − (𝐹𝐵)) ∈ ℂ)
87abscld 11145 . . . . 5 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
98adantr 274 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
10 cnplimclemle.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1110rphalfcld 9666 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ+)
1211rpred 9653 . . . . 5 (𝜑 → (𝐸 / 2) ∈ ℝ)
1312adantr 274 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ)
144adantr 274 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) ∈ ℂ)
151adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
16 simpll 524 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝜑)
1716, 8syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ)
1816, 12syl 14 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (𝐸 / 2) ∈ ℝ)
19 simpr 109 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → 𝑍 # 𝐵)
20 cnplimclemle.zd . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)
2116, 20syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘(𝑍𝐵)) < 𝐷)
22 cnplimclemle.im . . . . . . . . . . . 12 ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2316, 19, 21, 22syl3anc 1233 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
2417, 18, 23ltnsymd 8039 . . . . . . . . . 10 (((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) ∧ 𝑍 # 𝐵) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
2515, 24pm2.65da 656 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ 𝑍 # 𝐵)
26 cnplimclemr.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
2726, 3sseldd 3148 . . . . . . . . . 10 (𝜑𝑍 ∈ ℂ)
2826, 5sseldd 3148 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2928adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝐵 ∈ ℂ)
30 apti 8541 . . . . . . . . . 10 ((𝑍 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3127, 29, 30syl2an2r 590 . . . . . . . . 9 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝑍 = 𝐵 ↔ ¬ 𝑍 # 𝐵))
3225, 31mpbird 166 . . . . . . . 8 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 𝑍 = 𝐵)
3332fveq2d 5500 . . . . . . 7 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐹𝑍) = (𝐹𝐵))
3414, 33subeq0bd 8298 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ((𝐹𝑍) − (𝐹𝐵)) = 0)
3534abs00bd 11030 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) = 0)
3611adantr 274 . . . . . 6 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (𝐸 / 2) ∈ ℝ+)
3736rpgt0d 9656 . . . . 5 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → 0 < (𝐸 / 2))
3835, 37eqbrtrd 4011 . . . 4 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))
399, 13, 38ltnsymd 8039 . . 3 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → ¬ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))))
401, 39pm2.21dd 615 . 2 ((𝜑 ∧ (𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵)))) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
41 simpr 109 . 2 ((𝜑 ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
42 rphalflt 9640 . . . 4 (𝐸 ∈ ℝ+ → (𝐸 / 2) < 𝐸)
4310, 42syl 14 . . 3 (𝜑 → (𝐸 / 2) < 𝐸)
4410rpred 9653 . . . 4 (𝜑𝐸 ∈ ℝ)
45 axltwlin 7987 . . . 4 (((𝐸 / 2) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (abs‘((𝐹𝑍) − (𝐹𝐵))) ∈ ℝ) → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4612, 44, 8, 45syl3anc 1233 . . 3 (𝜑 → ((𝐸 / 2) < 𝐸 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)))
4743, 46mpd 13 . 2 (𝜑 → ((𝐸 / 2) < (abs‘((𝐹𝑍) − (𝐹𝐵))) ∨ (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸))
4840, 41, 47mpjaodan 793 1 (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wss 3121   class class class wbr 3989  ccom 4615  wf 5194  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774   < clt 7954  cmin 8090   # cap 8500   / cdiv 8589  2c2 8929  +crp 9610  abscabs 10961  t crest 12579  MetOpencmopn 12779   lim climc 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  cnplimclemr  13432
  Copyright terms: Public domain W3C validator