ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzdisj GIF version

Theorem uzdisj 9474
Description: The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzdisj ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅

Proof of Theorem uzdisj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elin 3181 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∧ 𝑘 ∈ (ℤ𝑁)))
21simprbi 269 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑁))
3 eluzle 9000 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
42, 3syl 14 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑁𝑘)
5 eluzel2 8993 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
62, 5syl 14 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑁 ∈ ℤ)
7 eluzelz 8997 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
82, 7syl 14 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ℤ)
9 zlem1lt 8776 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘 ↔ (𝑁 − 1) < 𝑘))
106, 8, 9syl2anc 403 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁𝑘 ↔ (𝑁 − 1) < 𝑘))
114, 10mpbid 145 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) < 𝑘)
121simplbi 268 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
13 elfzle2 9411 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ≤ (𝑁 − 1))
1412, 13syl 14 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ≤ (𝑁 − 1))
158zred 8838 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ℝ)
16 peano2zm 8758 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
176, 16syl 14 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) ∈ ℤ)
1817zred 8838 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) ∈ ℝ)
1915, 18lenltd 7580 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑘 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 𝑘))
2014, 19mpbid 145 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → ¬ (𝑁 − 1) < 𝑘)
2111, 20pm2.21dd 585 . . 3 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ∅)
2221ssriv 3027 . 2 ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ⊆ ∅
23 ss0 3320 . 2 (((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ⊆ ∅ → ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅)
2422, 23ax-mp 7 1 ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103   = wceq 1289  wcel 1438  cin 2996  wss 2997  c0 3284   class class class wbr 3837  cfv 5002  (class class class)co 5634  1c1 7330   < clt 7501  cle 7502  cmin 7632  cz 8720  cuz 8988  ...cfz 9393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394
This theorem is referenced by:  2prm  11191
  Copyright terms: Public domain W3C validator