Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzdisj | GIF version |
Description: The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
uzdisj | ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3310 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∧ 𝑘 ∈ (ℤ≥‘𝑁))) | |
2 | 1 | simprbi 273 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑁)) |
3 | eluzle 9499 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑘) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑘) |
5 | eluzel2 9492 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
6 | 2, 5 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
7 | eluzelz 9496 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ ℤ) | |
8 | 2, 7 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℤ) |
9 | zlem1lt 9268 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) | |
10 | 6, 8, 9 | syl2anc 409 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) |
11 | 4, 10 | mpbid 146 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) < 𝑘) |
12 | 1 | simplbi 272 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (𝑀...(𝑁 − 1))) |
13 | elfzle2 9984 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ≤ (𝑁 − 1)) | |
14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ≤ (𝑁 − 1)) |
15 | 8 | zred 9334 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℝ) |
16 | peano2zm 9250 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
17 | 6, 16 | syl 14 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℤ) |
18 | 17 | zred 9334 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℝ) |
19 | 15, 18 | lenltd 8037 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑘 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 𝑘)) |
20 | 14, 19 | mpbid 146 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → ¬ (𝑁 − 1) < 𝑘) |
21 | 11, 20 | pm2.21dd 615 | . . 3 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ∅) |
22 | 21 | ssriv 3151 | . 2 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ |
23 | ss0 3455 | . 2 ⊢ (((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ → ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅) | |
24 | 22, 23 | ax-mp 5 | 1 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 1c1 7775 < clt 7954 ≤ cle 7955 − cmin 8090 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: 2prm 12081 |
Copyright terms: Public domain | W3C validator |