| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzdisj | GIF version | ||
| Description: The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| uzdisj | ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3387 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∧ 𝑘 ∈ (ℤ≥‘𝑁))) | |
| 2 | 1 | simprbi 275 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 3 | eluzle 9734 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑘) | |
| 4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑘) |
| 5 | eluzel2 9727 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
| 6 | 2, 5 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
| 7 | eluzelz 9731 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ ℤ) | |
| 8 | 2, 7 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℤ) |
| 9 | zlem1lt 9503 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) | |
| 10 | 6, 8, 9 | syl2anc 411 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) |
| 11 | 4, 10 | mpbid 147 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) < 𝑘) |
| 12 | 1 | simplbi 274 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (𝑀...(𝑁 − 1))) |
| 13 | elfzle2 10224 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ≤ (𝑁 − 1)) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ≤ (𝑁 − 1)) |
| 15 | 8 | zred 9569 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℝ) |
| 16 | peano2zm 9484 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 17 | 6, 16 | syl 14 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℤ) |
| 18 | 17 | zred 9569 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℝ) |
| 19 | 15, 18 | lenltd 8264 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑘 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 𝑘)) |
| 20 | 14, 19 | mpbid 147 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → ¬ (𝑁 − 1) < 𝑘) |
| 21 | 11, 20 | pm2.21dd 623 | . . 3 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ∅) |
| 22 | 21 | ssriv 3228 | . 2 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ |
| 23 | ss0 3532 | . 2 ⊢ (((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ → ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅) | |
| 24 | 22, 23 | ax-mp 5 | 1 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 class class class wbr 4083 ‘cfv 5318 (class class class)co 6001 1c1 8000 < clt 8181 ≤ cle 8182 − cmin 8317 ℤcz 9446 ℤ≥cuz 9722 ...cfz 10204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: 2prm 12649 |
| Copyright terms: Public domain | W3C validator |