ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzdisj GIF version

Theorem uzdisj 10095
Description: The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzdisj ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅

Proof of Theorem uzdisj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elin 3320 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∧ 𝑘 ∈ (ℤ𝑁)))
21simprbi 275 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑁))
3 eluzle 9542 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
42, 3syl 14 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑁𝑘)
5 eluzel2 9535 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
62, 5syl 14 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑁 ∈ ℤ)
7 eluzelz 9539 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
82, 7syl 14 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ℤ)
9 zlem1lt 9311 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘 ↔ (𝑁 − 1) < 𝑘))
106, 8, 9syl2anc 411 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁𝑘 ↔ (𝑁 − 1) < 𝑘))
114, 10mpbid 147 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) < 𝑘)
121simplbi 274 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
13 elfzle2 10030 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ≤ (𝑁 − 1))
1412, 13syl 14 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ≤ (𝑁 − 1))
158zred 9377 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ℝ)
16 peano2zm 9293 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
176, 16syl 14 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) ∈ ℤ)
1817zred 9377 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) ∈ ℝ)
1915, 18lenltd 8077 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑘 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 𝑘))
2014, 19mpbid 147 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → ¬ (𝑁 − 1) < 𝑘)
2111, 20pm2.21dd 620 . . 3 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ∅)
2221ssriv 3161 . 2 ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ⊆ ∅
23 ss0 3465 . 2 (((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ⊆ ∅ → ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅)
2422, 23ax-mp 5 1 ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1353  wcel 2148  cin 3130  wss 3131  c0 3424   class class class wbr 4005  cfv 5218  (class class class)co 5877  1c1 7814   < clt 7994  cle 7995  cmin 8130  cz 9255  cuz 9530  ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by:  2prm  12129
  Copyright terms: Public domain W3C validator