Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzdisj | GIF version |
Description: The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
uzdisj | ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3305 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∧ 𝑘 ∈ (ℤ≥‘𝑁))) | |
2 | 1 | simprbi 273 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑁)) |
3 | eluzle 9478 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑘) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑘) |
5 | eluzel2 9471 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
6 | 2, 5 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
7 | eluzelz 9475 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ ℤ) | |
8 | 2, 7 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℤ) |
9 | zlem1lt 9247 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) | |
10 | 6, 8, 9 | syl2anc 409 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) |
11 | 4, 10 | mpbid 146 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) < 𝑘) |
12 | 1 | simplbi 272 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (𝑀...(𝑁 − 1))) |
13 | elfzle2 9963 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ≤ (𝑁 − 1)) | |
14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ≤ (𝑁 − 1)) |
15 | 8 | zred 9313 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℝ) |
16 | peano2zm 9229 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
17 | 6, 16 | syl 14 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℤ) |
18 | 17 | zred 9313 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℝ) |
19 | 15, 18 | lenltd 8016 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑘 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 𝑘)) |
20 | 14, 19 | mpbid 146 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → ¬ (𝑁 − 1) < 𝑘) |
21 | 11, 20 | pm2.21dd 610 | . . 3 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ∅) |
22 | 21 | ssriv 3146 | . 2 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ |
23 | ss0 3449 | . 2 ⊢ (((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ → ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅) | |
24 | 22, 23 | ax-mp 5 | 1 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 1c1 7754 < clt 7933 ≤ cle 7934 − cmin 8069 ℤcz 9191 ℤ≥cuz 9466 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: 2prm 12059 |
Copyright terms: Public domain | W3C validator |