| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzdisj | GIF version | ||
| Description: The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| uzdisj | ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3364 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∧ 𝑘 ∈ (ℤ≥‘𝑁))) | |
| 2 | 1 | simprbi 275 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 3 | eluzle 9695 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ≤ 𝑘) | |
| 4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ≤ 𝑘) |
| 5 | eluzel2 9688 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | |
| 6 | 2, 5 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
| 7 | eluzelz 9692 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ ℤ) | |
| 8 | 2, 7 | syl 14 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℤ) |
| 9 | zlem1lt 9464 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) | |
| 10 | 6, 8, 9 | syl2anc 411 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 ≤ 𝑘 ↔ (𝑁 − 1) < 𝑘)) |
| 11 | 4, 10 | mpbid 147 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) < 𝑘) |
| 12 | 1 | simplbi 274 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ (𝑀...(𝑁 − 1))) |
| 13 | elfzle2 10185 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ≤ (𝑁 − 1)) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ≤ (𝑁 − 1)) |
| 15 | 8 | zred 9530 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ℝ) |
| 16 | peano2zm 9445 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 17 | 6, 16 | syl 14 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℤ) |
| 18 | 17 | zred 9530 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑁 − 1) ∈ ℝ) |
| 19 | 15, 18 | lenltd 8225 | . . . . 5 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → (𝑘 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 𝑘)) |
| 20 | 14, 19 | mpbid 147 | . . . 4 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → ¬ (𝑁 − 1) < 𝑘) |
| 21 | 11, 20 | pm2.21dd 621 | . . 3 ⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) → 𝑘 ∈ ∅) |
| 22 | 21 | ssriv 3205 | . 2 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ |
| 23 | ss0 3509 | . 2 ⊢ (((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) ⊆ ∅ → ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅) | |
| 24 | 22, 23 | ax-mp 5 | 1 ⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∩ cin 3173 ⊆ wss 3174 ∅c0 3468 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 1c1 7961 < clt 8142 ≤ cle 8143 − cmin 8278 ℤcz 9407 ℤ≥cuz 9683 ...cfz 10165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: 2prm 12564 |
| Copyright terms: Public domain | W3C validator |