| Step | Hyp | Ref
| Expression |
| 1 | | elin 3347 |
. . . . . . 7
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) |
| 2 | 1 | simprbi 275 |
. . . . . 6
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑁 + 1))) |
| 3 | | eluzle 9630 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘) |
| 4 | 2, 3 | syl 14 |
. . . . 5
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘) |
| 5 | | eluzel2 9623 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ) |
| 6 | 2, 5 | syl 14 |
. . . . . 6
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ∈
ℤ) |
| 7 | | eluzelz 9627 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘(𝑁 + 1)) → 𝑘 ∈ ℤ) |
| 8 | 2, 7 | syl 14 |
. . . . . 6
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈
ℤ) |
| 9 | | zlem1lt 9399 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
| 10 | 6, 8, 9 | syl2anc 411 |
. . . . 5
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
| 11 | 4, 10 | mpbid 147 |
. . . 4
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘) |
| 12 | 1 | simplbi 274 |
. . . . . 6
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁)) |
| 13 | | elfzle2 10120 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) |
| 14 | 12, 13 | syl 14 |
. . . . 5
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ≤ 𝑁) |
| 15 | 8 | zred 9465 |
. . . . . . 7
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈
ℝ) |
| 16 | | elfzel2 10115 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ) |
| 17 | 16 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
| 18 | 1, 17 | sylbi 121 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
| 19 | 18 | zred 9465 |
. . . . . . 7
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℝ) |
| 20 | 15, 19 | lenltd 8161 |
. . . . . 6
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑘)) |
| 21 | 18 | zcnd 9466 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℂ) |
| 22 | | pncan1 8420 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) |
| 23 | 21, 22 | syl 14 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁) |
| 24 | 23 | eqcomd 2202 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1)) |
| 25 | 24 | breq1d 4044 |
. . . . . . 7
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
| 26 | 25 | notbid 668 |
. . . . . 6
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
| 27 | 20, 26 | bitrd 188 |
. . . . 5
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
| 28 | 14, 27 | mpbid 147 |
. . . 4
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘) |
| 29 | 11, 28 | pm2.21dd 621 |
. . 3
⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈
∅) |
| 30 | 29 | ssriv 3188 |
. 2
⊢
((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))) ⊆ ∅ |
| 31 | | ss0 3492 |
. 2
⊢
(((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))) = ∅) |
| 32 | 30, 31 | ax-mp 5 |
1
⊢
((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))) = ∅ |