ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0disj GIF version

Theorem nn0disj 10330
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅

Proof of Theorem nn0disj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elin 3387 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
21simprbi 275 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
3 eluzle 9730 . . . . . 6 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
42, 3syl 14 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘)
5 eluzel2 9723 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ)
62, 5syl 14 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ)
7 eluzelz 9727 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℤ)
82, 7syl 14 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℤ)
9 zlem1lt 9499 . . . . . 6 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
106, 8, 9syl2anc 411 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
114, 10mpbid 147 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘)
121simplbi 274 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁))
13 elfzle2 10220 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
1412, 13syl 14 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘𝑁)
158zred 9565 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℝ)
16 elfzel2 10215 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1716adantr 276 . . . . . . . . 9 ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
181, 17sylbi 121 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1918zred 9565 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℝ)
2015, 19lenltd 8260 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ 𝑁 < 𝑘))
2118zcnd 9566 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℂ)
22 pncan1 8519 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2321, 22syl 14 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁)
2423eqcomd 2235 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1))
2524breq1d 4092 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
2625notbid 671 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2720, 26bitrd 188 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2814, 27mpbid 147 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘)
2911, 28pm2.21dd 623 . . 3 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ∅)
3029ssriv 3228 . 2 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅
31 ss0 3532 . 2 (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
3230, 31ax-mp 5 1 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1395  wcel 2200  cin 3196  wss 3197  c0 3491   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cmin 8313  cz 9442  cuz 9718  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator