ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex GIF version

Theorem zsupcllemex 10395
Description: Lemma for zsupcl 10396. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m (𝜑𝑀 ∈ ℤ)
zsupcllemex.sbm (𝑛 = 𝑀 → (𝜓𝜒))
zsupcllemex.mtru (𝜑𝜒)
zsupcllemex.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
zsupcllemex.bnd (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
Assertion
Ref Expression
zsupcllemex (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑀,𝑦   𝜒,𝑛   𝑗,𝑛,𝜑,𝑦   𝜓,𝑗,𝑥,𝑧,𝑦   𝑥,𝑛,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑀(𝑥,𝑧,𝑗)

Proof of Theorem zsupcllemex
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
2 simpl 109 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → 𝜑)
3 simprr 531 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
4 fveq2 5589 . . . . . . . 8 (𝑤 = 𝑀 → (ℤ𝑤) = (ℤ𝑀))
54raleqdv 2709 . . . . . . 7 (𝑤 = 𝑀 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓))
65anbi2d 464 . . . . . 6 (𝑤 = 𝑀 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓)))
76imbi1d 231 . . . . 5 (𝑤 = 𝑀 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
8 fveq2 5589 . . . . . . . 8 (𝑤 = 𝑘 → (ℤ𝑤) = (ℤ𝑘))
98raleqdv 2709 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓))
109anbi2d 464 . . . . . 6 (𝑤 = 𝑘 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓)))
1110imbi1d 231 . . . . 5 (𝑤 = 𝑘 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
12 fveq2 5589 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (ℤ𝑤) = (ℤ‘(𝑘 + 1)))
1312raleqdv 2709 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓))
1413anbi2d 464 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓)))
1514imbi1d 231 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
16 fveq2 5589 . . . . . . . 8 (𝑤 = 𝑗 → (ℤ𝑤) = (ℤ𝑗))
1716raleqdv 2709 . . . . . . 7 (𝑤 = 𝑗 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓))
1817anbi2d 464 . . . . . 6 (𝑤 = 𝑗 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)))
1918imbi1d 231 . . . . 5 (𝑤 = 𝑗 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
20 zsupcllemex.mtru . . . . . . . 8 (𝜑𝜒)
2120adantr 276 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → 𝜒)
22 zsupcllemex.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
23 uzid 9682 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 zsupcllemex.sbm . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝜓𝜒))
2524notbid 669 . . . . . . . . . 10 (𝑛 = 𝑀 → (¬ 𝜓 ↔ ¬ 𝜒))
2625rspcv 2877 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2722, 23, 263syl 17 . . . . . . . 8 (𝜑 → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2827imp 124 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ¬ 𝜒)
2921, 28pm2.21dd 621 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
3029a1i 9 . . . . 5 (𝑀 ∈ ℤ → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
31 zsupcllemex.dc . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
3231zsupcllemstep 10394 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
337, 11, 15, 19, 30, 32uzind4 9729 . . . 4 (𝑗 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
3433ad2antrl 490 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
352, 3, 34mp2and 433 . 2 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
361, 35rexlimddv 2629 1 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489   class class class wbr 4051  cfv 5280  (class class class)co 5957  cr 7944  1c1 7946   + caddc 7948   < clt 8127  cz 9392  cuz 9668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285
This theorem is referenced by:  zsupcl  10396  infssuzex  10398  gcdsupex  12353
  Copyright terms: Public domain W3C validator