ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex GIF version

Theorem zsupcllemex 11946
Description: Lemma for zsupcl 11947. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m (𝜑𝑀 ∈ ℤ)
zsupcllemex.sbm (𝑛 = 𝑀 → (𝜓𝜒))
zsupcllemex.mtru (𝜑𝜒)
zsupcllemex.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
zsupcllemex.bnd (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
Assertion
Ref Expression
zsupcllemex (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑀,𝑦   𝜒,𝑛   𝑗,𝑛,𝜑,𝑦   𝜓,𝑗,𝑥,𝑧,𝑦   𝑥,𝑛,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑀(𝑥,𝑧,𝑗)

Proof of Theorem zsupcllemex
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
2 simpl 109 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → 𝜑)
3 simprr 531 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
4 fveq2 5515 . . . . . . . 8 (𝑤 = 𝑀 → (ℤ𝑤) = (ℤ𝑀))
54raleqdv 2678 . . . . . . 7 (𝑤 = 𝑀 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓))
65anbi2d 464 . . . . . 6 (𝑤 = 𝑀 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓)))
76imbi1d 231 . . . . 5 (𝑤 = 𝑀 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
8 fveq2 5515 . . . . . . . 8 (𝑤 = 𝑘 → (ℤ𝑤) = (ℤ𝑘))
98raleqdv 2678 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓))
109anbi2d 464 . . . . . 6 (𝑤 = 𝑘 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓)))
1110imbi1d 231 . . . . 5 (𝑤 = 𝑘 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
12 fveq2 5515 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (ℤ𝑤) = (ℤ‘(𝑘 + 1)))
1312raleqdv 2678 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓))
1413anbi2d 464 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓)))
1514imbi1d 231 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
16 fveq2 5515 . . . . . . . 8 (𝑤 = 𝑗 → (ℤ𝑤) = (ℤ𝑗))
1716raleqdv 2678 . . . . . . 7 (𝑤 = 𝑗 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓))
1817anbi2d 464 . . . . . 6 (𝑤 = 𝑗 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)))
1918imbi1d 231 . . . . 5 (𝑤 = 𝑗 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
20 zsupcllemex.mtru . . . . . . . 8 (𝜑𝜒)
2120adantr 276 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → 𝜒)
22 zsupcllemex.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
23 uzid 9541 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 zsupcllemex.sbm . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝜓𝜒))
2524notbid 667 . . . . . . . . . 10 (𝑛 = 𝑀 → (¬ 𝜓 ↔ ¬ 𝜒))
2625rspcv 2837 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2722, 23, 263syl 17 . . . . . . . 8 (𝜑 → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2827imp 124 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ¬ 𝜒)
2921, 28pm2.21dd 620 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
3029a1i 9 . . . . 5 (𝑀 ∈ ℤ → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
31 zsupcllemex.dc . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
3231zsupcllemstep 11945 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
337, 11, 15, 19, 30, 32uzind4 9587 . . . 4 (𝑗 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
3433ad2antrl 490 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
352, 3, 34mp2and 433 . 2 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
361, 35rexlimddv 2599 1 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459   class class class wbr 4003  cfv 5216  (class class class)co 5874  cr 7809  1c1 7811   + caddc 7813   < clt 7991  cz 9252  cuz 9527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-fz 10008  df-fzo 10142
This theorem is referenced by:  zsupcl  11947  infssuzex  11949  gcdsupex  11957
  Copyright terms: Public domain W3C validator