ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex GIF version

Theorem zsupcllemex 10371
Description: Lemma for zsupcl 10372. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m (𝜑𝑀 ∈ ℤ)
zsupcllemex.sbm (𝑛 = 𝑀 → (𝜓𝜒))
zsupcllemex.mtru (𝜑𝜒)
zsupcllemex.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
zsupcllemex.bnd (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
Assertion
Ref Expression
zsupcllemex (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑀,𝑦   𝜒,𝑛   𝑗,𝑛,𝜑,𝑦   𝜓,𝑗,𝑥,𝑧,𝑦   𝑥,𝑛,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑀(𝑥,𝑧,𝑗)

Proof of Theorem zsupcllemex
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
2 simpl 109 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → 𝜑)
3 simprr 531 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
4 fveq2 5575 . . . . . . . 8 (𝑤 = 𝑀 → (ℤ𝑤) = (ℤ𝑀))
54raleqdv 2707 . . . . . . 7 (𝑤 = 𝑀 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓))
65anbi2d 464 . . . . . 6 (𝑤 = 𝑀 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓)))
76imbi1d 231 . . . . 5 (𝑤 = 𝑀 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
8 fveq2 5575 . . . . . . . 8 (𝑤 = 𝑘 → (ℤ𝑤) = (ℤ𝑘))
98raleqdv 2707 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓))
109anbi2d 464 . . . . . 6 (𝑤 = 𝑘 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓)))
1110imbi1d 231 . . . . 5 (𝑤 = 𝑘 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
12 fveq2 5575 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (ℤ𝑤) = (ℤ‘(𝑘 + 1)))
1312raleqdv 2707 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓))
1413anbi2d 464 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓)))
1514imbi1d 231 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
16 fveq2 5575 . . . . . . . 8 (𝑤 = 𝑗 → (ℤ𝑤) = (ℤ𝑗))
1716raleqdv 2707 . . . . . . 7 (𝑤 = 𝑗 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓))
1817anbi2d 464 . . . . . 6 (𝑤 = 𝑗 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)))
1918imbi1d 231 . . . . 5 (𝑤 = 𝑗 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
20 zsupcllemex.mtru . . . . . . . 8 (𝜑𝜒)
2120adantr 276 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → 𝜒)
22 zsupcllemex.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
23 uzid 9661 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 zsupcllemex.sbm . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝜓𝜒))
2524notbid 668 . . . . . . . . . 10 (𝑛 = 𝑀 → (¬ 𝜓 ↔ ¬ 𝜒))
2625rspcv 2872 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2722, 23, 263syl 17 . . . . . . . 8 (𝜑 → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2827imp 124 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ¬ 𝜒)
2921, 28pm2.21dd 621 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
3029a1i 9 . . . . 5 (𝑀 ∈ ℤ → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
31 zsupcllemex.dc . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
3231zsupcllemstep 10370 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
337, 11, 15, 19, 30, 32uzind4 9708 . . . 4 (𝑗 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
3433ad2antrl 490 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
352, 3, 34mp2and 433 . 2 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
361, 35rexlimddv 2627 1 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  wrex 2484  {crab 2487   class class class wbr 4043  cfv 5270  (class class class)co 5943  cr 7923  1c1 7925   + caddc 7927   < clt 8106  cz 9371  cuz 9647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264
This theorem is referenced by:  zsupcl  10372  infssuzex  10374  gcdsupex  12220
  Copyright terms: Public domain W3C validator