ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex GIF version

Theorem zsupcllemex 11901
Description: Lemma for zsupcl 11902. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m (𝜑𝑀 ∈ ℤ)
zsupcllemex.sbm (𝑛 = 𝑀 → (𝜓𝜒))
zsupcllemex.mtru (𝜑𝜒)
zsupcllemex.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
zsupcllemex.bnd (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
Assertion
Ref Expression
zsupcllemex (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Distinct variable groups:   𝑛,𝑀,𝑦   𝜒,𝑛   𝑗,𝑛,𝜑,𝑦   𝜓,𝑗,𝑥,𝑧,𝑦   𝑥,𝑛,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑀(𝑥,𝑧,𝑗)

Proof of Theorem zsupcllemex
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
2 simpl 108 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → 𝜑)
3 simprr 527 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)
4 fveq2 5496 . . . . . . . 8 (𝑤 = 𝑀 → (ℤ𝑤) = (ℤ𝑀))
54raleqdv 2671 . . . . . . 7 (𝑤 = 𝑀 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓))
65anbi2d 461 . . . . . 6 (𝑤 = 𝑀 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓)))
76imbi1d 230 . . . . 5 (𝑤 = 𝑀 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
8 fveq2 5496 . . . . . . . 8 (𝑤 = 𝑘 → (ℤ𝑤) = (ℤ𝑘))
98raleqdv 2671 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓))
109anbi2d 461 . . . . . 6 (𝑤 = 𝑘 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓)))
1110imbi1d 230 . . . . 5 (𝑤 = 𝑘 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
12 fveq2 5496 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (ℤ𝑤) = (ℤ‘(𝑘 + 1)))
1312raleqdv 2671 . . . . . . 7 (𝑤 = (𝑘 + 1) → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓))
1413anbi2d 461 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓)))
1514imbi1d 230 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
16 fveq2 5496 . . . . . . . 8 (𝑤 = 𝑗 → (ℤ𝑤) = (ℤ𝑗))
1716raleqdv 2671 . . . . . . 7 (𝑤 = 𝑗 → (∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓 ↔ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓))
1817anbi2d 461 . . . . . 6 (𝑤 = 𝑗 → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) ↔ (𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)))
1918imbi1d 230 . . . . 5 (𝑤 = 𝑗 → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑤) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) ↔ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
20 zsupcllemex.mtru . . . . . . . 8 (𝜑𝜒)
2120adantr 274 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → 𝜒)
22 zsupcllemex.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
23 uzid 9501 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 zsupcllemex.sbm . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝜓𝜒))
2524notbid 662 . . . . . . . . . 10 (𝑛 = 𝑀 → (¬ 𝜓 ↔ ¬ 𝜒))
2625rspcv 2830 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2722, 23, 263syl 17 . . . . . . . 8 (𝜑 → (∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓 → ¬ 𝜒))
2827imp 123 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ¬ 𝜒)
2921, 28pm2.21dd 615 . . . . . 6 ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
3029a1i 9 . . . . 5 (𝑀 ∈ ℤ → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑀) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
31 zsupcllemex.dc . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
3231zsupcllemstep 11900 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑘) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
337, 11, 15, 19, 30, 32uzind4 9547 . . . 4 (𝑗 ∈ (ℤ𝑀) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
3433ad2antrl 487 . . 3 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
352, 3, 34mp2and 431 . 2 ((𝜑 ∧ (𝑗 ∈ (ℤ𝑀) ∧ ∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
361, 35rexlimddv 2592 1 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by:  zsupcl  11902  infssuzex  11904  gcdsupex  11912
  Copyright terms: Public domain W3C validator