ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addmodlteq GIF version

Theorem addmodlteq 10333
Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
addmodlteq ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))

Proof of Theorem addmodlteq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzoelz 10082 . . . . . . . 8 (𝐼 ∈ (0..^𝑁) → 𝐼 ∈ ℤ)
213ad2ant1 1008 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝐼 ∈ ℤ)
3 zq 9564 . . . . . . 7 (𝐼 ∈ ℤ → 𝐼 ∈ ℚ)
42, 3syl 14 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝐼 ∈ ℚ)
5 simp3 989 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑆 ∈ ℤ)
6 zq 9564 . . . . . . 7 (𝑆 ∈ ℤ → 𝑆 ∈ ℚ)
75, 6syl 14 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑆 ∈ ℚ)
8 elfzo0 10117 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
98biimpi 119 . . . . . . . . 9 (𝐼 ∈ (0..^𝑁) → (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
1093ad2ant1 1008 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
1110simp2d 1000 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℕ)
12 nnq 9571 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
1311, 12syl 14 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℚ)
1411nngt0d 8901 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 0 < 𝑁)
15 modqaddmod 10298 . . . . . 6 (((𝐼 ∈ ℚ ∧ 𝑆 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐼 mod 𝑁) + 𝑆) mod 𝑁) = ((𝐼 + 𝑆) mod 𝑁))
164, 7, 13, 14, 15syl22anc 1229 . . . . 5 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 mod 𝑁) + 𝑆) mod 𝑁) = ((𝐼 + 𝑆) mod 𝑁))
1716eqcomd 2171 . . . 4 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐼 + 𝑆) mod 𝑁) = (((𝐼 mod 𝑁) + 𝑆) mod 𝑁))
18 elfzoelz 10082 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
19183ad2ant2 1009 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝐽 ∈ ℤ)
20 zq 9564 . . . . . . 7 (𝐽 ∈ ℤ → 𝐽 ∈ ℚ)
2119, 20syl 14 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝐽 ∈ ℚ)
22 modqaddmod 10298 . . . . . 6 (((𝐽 ∈ ℚ ∧ 𝑆 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐽 mod 𝑁) + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁))
2321, 7, 13, 14, 22syl22anc 1229 . . . . 5 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐽 mod 𝑁) + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁))
2423eqcomd 2171 . . . 4 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐽 + 𝑆) mod 𝑁) = (((𝐽 mod 𝑁) + 𝑆) mod 𝑁))
2517, 24eqeq12d 2180 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ (((𝐼 mod 𝑁) + 𝑆) mod 𝑁) = (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)))
262, 11zmodcld 10280 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℕ0)
2726nn0zd 9311 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℤ)
2827, 5zaddcld 9317 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐼 mod 𝑁) + 𝑆) ∈ ℤ)
2928, 11zmodcld 10280 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 mod 𝑁) + 𝑆) mod 𝑁) ∈ ℕ0)
3029nn0cnd 9169 . . . . 5 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 mod 𝑁) + 𝑆) mod 𝑁) ∈ ℂ)
3119, 11zmodcld 10280 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐽 mod 𝑁) ∈ ℕ0)
3231nn0zd 9311 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐽 mod 𝑁) ∈ ℤ)
3332, 5zaddcld 9317 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐽 mod 𝑁) + 𝑆) ∈ ℤ)
3433, 11zmodcld 10280 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐽 mod 𝑁) + 𝑆) mod 𝑁) ∈ ℕ0)
3534nn0cnd 9169 . . . . 5 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐽 mod 𝑁) + 𝑆) mod 𝑁) ∈ ℂ)
3630, 35subeq0ad 8219 . . . 4 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) = 0 ↔ (((𝐼 mod 𝑁) + 𝑆) mod 𝑁) = (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)))
37 oveq1 5849 . . . . 5 (((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) = 0 → (((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) mod 𝑁) = (0 mod 𝑁))
384, 13, 14modqcld 10263 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℚ)
39 qaddcl 9573 . . . . . . . . . 10 (((𝐼 mod 𝑁) ∈ ℚ ∧ 𝑆 ∈ ℚ) → ((𝐼 mod 𝑁) + 𝑆) ∈ ℚ)
4038, 7, 39syl2anc 409 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐼 mod 𝑁) + 𝑆) ∈ ℚ)
4121, 13, 14modqcld 10263 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐽 mod 𝑁) ∈ ℚ)
42 qaddcl 9573 . . . . . . . . . 10 (((𝐽 mod 𝑁) ∈ ℚ ∧ 𝑆 ∈ ℚ) → ((𝐽 mod 𝑁) + 𝑆) ∈ ℚ)
4341, 7, 42syl2anc 409 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐽 mod 𝑁) + 𝑆) ∈ ℚ)
44 modqsubmodmod 10318 . . . . . . . . 9 (((((𝐼 mod 𝑁) + 𝑆) ∈ ℚ ∧ ((𝐽 mod 𝑁) + 𝑆) ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) mod 𝑁) = ((((𝐼 mod 𝑁) + 𝑆) − ((𝐽 mod 𝑁) + 𝑆)) mod 𝑁))
4540, 43, 13, 14, 44syl22anc 1229 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) mod 𝑁) = ((((𝐼 mod 𝑁) + 𝑆) − ((𝐽 mod 𝑁) + 𝑆)) mod 𝑁))
4626nn0cnd 9169 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼 mod 𝑁) ∈ ℂ)
4731nn0cnd 9169 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐽 mod 𝑁) ∈ ℂ)
485zcnd 9314 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑆 ∈ ℂ)
4946, 47, 48pnpcan2d 8247 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 mod 𝑁) + 𝑆) − ((𝐽 mod 𝑁) + 𝑆)) = ((𝐼 mod 𝑁) − (𝐽 mod 𝑁)))
5049oveq1d 5857 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((((𝐼 mod 𝑁) + 𝑆) − ((𝐽 mod 𝑁) + 𝑆)) mod 𝑁) = (((𝐼 mod 𝑁) − (𝐽 mod 𝑁)) mod 𝑁))
5145, 50eqtrd 2198 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) mod 𝑁) = (((𝐼 mod 𝑁) − (𝐽 mod 𝑁)) mod 𝑁))
52 q0mod 10290 . . . . . . . 8 ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0)
5313, 14, 52syl2anc 409 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (0 mod 𝑁) = 0)
5451, 53eqeq12d 2180 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) mod 𝑁) = (0 mod 𝑁) ↔ (((𝐼 mod 𝑁) − (𝐽 mod 𝑁)) mod 𝑁) = 0))
55 zmodidfzoimp 10289 . . . . . . . . . . 11 (𝐼 ∈ (0..^𝑁) → (𝐼 mod 𝑁) = 𝐼)
56553ad2ant1 1008 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼 mod 𝑁) = 𝐼)
57 zmodidfzoimp 10289 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → (𝐽 mod 𝑁) = 𝐽)
58573ad2ant2 1009 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐽 mod 𝑁) = 𝐽)
5956, 58oveq12d 5860 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐼 mod 𝑁) − (𝐽 mod 𝑁)) = (𝐼𝐽))
6059oveq1d 5857 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 mod 𝑁) − (𝐽 mod 𝑁)) mod 𝑁) = ((𝐼𝐽) mod 𝑁))
6160eqeq1d 2174 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((((𝐼 mod 𝑁) − (𝐽 mod 𝑁)) mod 𝑁) = 0 ↔ ((𝐼𝐽) mod 𝑁) = 0))
62 qsubcl 9576 . . . . . . . . . 10 ((𝐼 ∈ ℚ ∧ 𝐽 ∈ ℚ) → (𝐼𝐽) ∈ ℚ)
634, 21, 62syl2anc 409 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼𝐽) ∈ ℚ)
64 modq0 10264 . . . . . . . . 9 (((𝐼𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (((𝐼𝐽) mod 𝑁) = 0 ↔ ((𝐼𝐽) / 𝑁) ∈ ℤ))
6563, 13, 14, 64syl3anc 1228 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼𝐽) mod 𝑁) = 0 ↔ ((𝐼𝐽) / 𝑁) ∈ ℤ))
662, 19zsubcld 9318 . . . . . . . . . 10 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐼𝐽) ∈ ℤ)
67 zdiv 9279 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐼𝐽) ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑁 · 𝑘) = (𝐼𝐽) ↔ ((𝐼𝐽) / 𝑁) ∈ ℤ))
6811, 66, 67syl2anc 409 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑁 · 𝑘) = (𝐼𝐽) ↔ ((𝐼𝐽) / 𝑁) ∈ ℤ))
69 simpr 109 . . . . . . . . . . . . . . . . . 18 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → 𝑘 = 0)
7069oveq2d 5858 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝑁 · 𝑘) = (𝑁 · 0))
7111nncnd 8871 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℂ)
7271mul01d 8291 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 · 0) = 0)
7372ad2antrr 480 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝑁 · 0) = 0)
7470, 73eqtrd 2198 . . . . . . . . . . . . . . . 16 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (𝑁 · 𝑘) = 0)
7574eqeq1d 2174 . . . . . . . . . . . . . . 15 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → ((𝑁 · 𝑘) = (𝐼𝐽) ↔ 0 = (𝐼𝐽)))
76 eqcom 2167 . . . . . . . . . . . . . . . 16 (0 = (𝐼𝐽) ↔ (𝐼𝐽) = 0)
7710simp1d 999 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝐼 ∈ ℕ0)
7877ad2antrr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → 𝐼 ∈ ℕ0)
7978nn0cnd 9169 . . . . . . . . . . . . . . . . . 18 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → 𝐼 ∈ ℂ)
80 elfzo0 10117 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
8180biimpi 119 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ (0..^𝑁) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
82813ad2ant2 1009 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
8382simp1d 999 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝐽 ∈ ℕ0)
8483ad2antrr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → 𝐽 ∈ ℕ0)
8584nn0cnd 9169 . . . . . . . . . . . . . . . . . 18 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → 𝐽 ∈ ℂ)
8679, 85subeq0ad 8219 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → ((𝐼𝐽) = 0 ↔ 𝐼 = 𝐽))
8786biimpd 143 . . . . . . . . . . . . . . . 16 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → ((𝐼𝐽) = 0 → 𝐼 = 𝐽))
8876, 87syl5bi 151 . . . . . . . . . . . . . . 15 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → (0 = (𝐼𝐽) → 𝐼 = 𝐽))
8975, 88sylbid 149 . . . . . . . . . . . . . 14 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) → ((𝑁 · 𝑘) = (𝐼𝐽) → 𝐼 = 𝐽))
9089imp 123 . . . . . . . . . . . . 13 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 = 0) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) → 𝐼 = 𝐽)
9190an32s 558 . . . . . . . . . . . 12 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 = 0) → 𝐼 = 𝐽)
92 subfzo0 10177 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
93923adant3 1007 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
9493ad3antrrr 484 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
9594simprd 113 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → (𝐼𝐽) < 𝑁)
96 simplr 520 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → (𝑁 · 𝑘) = (𝐼𝐽))
9771mulid1d 7916 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 · 1) = 𝑁)
9897ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → (𝑁 · 1) = 𝑁)
9995, 96, 983brtr4d 4014 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → (𝑁 · 𝑘) < (𝑁 · 1))
100 simpllr 524 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
101100zred 9313 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
102 1red 7914 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
10311nnrpd 9630 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℝ+)
104103ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 𝑁 ∈ ℝ+)
105101, 102, 104ltmul2d 9675 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → (𝑘 < 1 ↔ (𝑁 · 𝑘) < (𝑁 · 1)))
10699, 105mpbird 166 . . . . . . . . . . . . 13 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 𝑘 < 1)
107 simpr 109 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
108107nnge1d 8900 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
109102, 101, 108lensymd 8020 . . . . . . . . . . . . 13 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 < 1)
110106, 109pm2.21dd 610 . . . . . . . . . . . 12 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ 𝑘 ∈ ℕ) → 𝐼 = 𝐽)
11193ad3antrrr 484 . . . . . . . . . . . . . . . . 17 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
112111simpld 111 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → -𝑁 < (𝐼𝐽))
113 simplr 520 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑁 · 𝑘) = (𝐼𝐽))
114112, 113breqtrrd 4010 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → -𝑁 < (𝑁 · 𝑘))
11511nnzd 9312 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℤ)
116115adantr 274 . . . . . . . . . . . . . . . . . . 19 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
117 simpr 109 . . . . . . . . . . . . . . . . . . 19 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
118116, 117zmulcld 9319 . . . . . . . . . . . . . . . . . 18 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑁 · 𝑘) ∈ ℤ)
119118zred 9313 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑁 · 𝑘) ∈ ℝ)
120119ad2antrr 480 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑁 · 𝑘) ∈ ℝ)
12111nnred 8870 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℝ)
122121ad3antrrr 484 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 𝑁 ∈ ℝ)
123120, 122possumd 8467 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (0 < ((𝑁 · 𝑘) + 𝑁) ↔ -𝑁 < (𝑁 · 𝑘)))
124114, 123mpbird 166 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 0 < ((𝑁 · 𝑘) + 𝑁))
12597eqcomd 2171 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 = (𝑁 · 1))
126125oveq2d 5858 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝑁 · 𝑘) + 𝑁) = ((𝑁 · 𝑘) + (𝑁 · 1)))
127126ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → ((𝑁 · 𝑘) + 𝑁) = ((𝑁 · 𝑘) + (𝑁 · 1)))
12871ad3antrrr 484 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 𝑁 ∈ ℂ)
129117zcnd 9314 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
130129ad2antrr 480 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
131 1cnd 7915 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 1 ∈ ℂ)
132128, 130, 131adddid 7923 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑁 · (𝑘 + 1)) = ((𝑁 · 𝑘) + (𝑁 · 1)))
133127, 132eqtr4d 2201 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → ((𝑁 · 𝑘) + 𝑁) = (𝑁 · (𝑘 + 1)))
134124, 133breqtrd 4008 . . . . . . . . . . . . 13 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 0 < (𝑁 · (𝑘 + 1)))
135117peano2zd 9316 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 + 1) ∈ ℤ)
136116, 135zmulcld 9319 . . . . . . . . . . . . . . . 16 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑁 · (𝑘 + 1)) ∈ ℤ)
137136zred 9313 . . . . . . . . . . . . . . 15 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑁 · (𝑘 + 1)) ∈ ℝ)
138137ad2antrr 480 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑁 · (𝑘 + 1)) ∈ ℝ)
139 0red 7900 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 0 ∈ ℝ)
14071adantr 274 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
141135zcnd 9314 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 + 1) ∈ ℂ)
142140, 141mulcomd 7920 . . . . . . . . . . . . . . . 16 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑁 · (𝑘 + 1)) = ((𝑘 + 1) · 𝑁))
143142ad2antrr 480 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑁 · (𝑘 + 1)) = ((𝑘 + 1) · 𝑁))
144135zred 9313 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 + 1) ∈ ℝ)
145144ad2antrr 480 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
146 zcn 9196 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
147 1cnd 7915 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → 1 ∈ ℂ)
148146, 147addcomd 8049 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑘 + 1) = (1 + 𝑘))
149147, 146subnegd 8216 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (1 − -𝑘) = (1 + 𝑘))
150148, 149eqtr4d 2201 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (𝑘 + 1) = (1 − -𝑘))
151150ad3antlr 485 . . . . . . . . . . . . . . . . 17 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑘 + 1) = (1 − -𝑘))
152 simpr 109 . . . . . . . . . . . . . . . . . . 19 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → -𝑘 ∈ ℕ)
153152nnge1d 8900 . . . . . . . . . . . . . . . . . 18 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 1 ≤ -𝑘)
154 1red 7914 . . . . . . . . . . . . . . . . . . 19 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 1 ∈ ℝ)
155152nnred 8870 . . . . . . . . . . . . . . . . . . 19 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → -𝑘 ∈ ℝ)
156154, 155suble0d 8434 . . . . . . . . . . . . . . . . . 18 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → ((1 − -𝑘) ≤ 0 ↔ 1 ≤ -𝑘))
157153, 156mpbird 166 . . . . . . . . . . . . . . . . 17 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (1 − -𝑘) ≤ 0)
158151, 157eqbrtrd 4004 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑘 + 1) ≤ 0)
15911nnnn0d 9167 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℕ0)
160159nn0ge0d 9170 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 0 ≤ 𝑁)
161160ad3antrrr 484 . . . . . . . . . . . . . . . 16 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 0 ≤ 𝑁)
162 mulle0r 8839 . . . . . . . . . . . . . . . 16 ((((𝑘 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ ((𝑘 + 1) ≤ 0 ∧ 0 ≤ 𝑁)) → ((𝑘 + 1) · 𝑁) ≤ 0)
163145, 122, 158, 161, 162syl22anc 1229 . . . . . . . . . . . . . . 15 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝑁) ≤ 0)
164143, 163eqbrtrd 4004 . . . . . . . . . . . . . 14 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → (𝑁 · (𝑘 + 1)) ≤ 0)
165138, 139, 164lensymd 8020 . . . . . . . . . . . . 13 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → ¬ 0 < (𝑁 · (𝑘 + 1)))
166134, 165pm2.21dd 610 . . . . . . . . . . . 12 (((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) ∧ -𝑘 ∈ ℕ) → 𝐼 = 𝐽)
167 elz 9193 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↔ (𝑘 ∈ ℝ ∧ (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ)))
168167simprbi 273 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
169168ad2antlr 481 . . . . . . . . . . . 12 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) → (𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ -𝑘 ∈ ℕ))
17091, 110, 166, 169mpjao3dan 1297 . . . . . . . . . . 11 ((((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) ∧ (𝑁 · 𝑘) = (𝐼𝐽)) → 𝐼 = 𝐽)
171170ex 114 . . . . . . . . . 10 (((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 · 𝑘) = (𝐼𝐽) → 𝐼 = 𝐽))
172171rexlimdva 2583 . . . . . . . . 9 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑁 · 𝑘) = (𝐼𝐽) → 𝐼 = 𝐽))
17368, 172sylbird 169 . . . . . . . 8 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼𝐽) / 𝑁) ∈ ℤ → 𝐼 = 𝐽))
17465, 173sylbid 149 . . . . . . 7 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼𝐽) mod 𝑁) = 0 → 𝐼 = 𝐽))
17561, 174sylbid 149 . . . . . 6 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((((𝐼 mod 𝑁) − (𝐽 mod 𝑁)) mod 𝑁) = 0 → 𝐼 = 𝐽))
17654, 175sylbid 149 . . . . 5 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) mod 𝑁) = (0 mod 𝑁) → 𝐼 = 𝐽))
17737, 176syl5 32 . . . 4 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) − (((𝐽 mod 𝑁) + 𝑆) mod 𝑁)) = 0 → 𝐼 = 𝐽))
17836, 177sylbird 169 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((((𝐼 mod 𝑁) + 𝑆) mod 𝑁) = (((𝐽 mod 𝑁) + 𝑆) mod 𝑁) → 𝐼 = 𝐽))
17925, 178sylbid 149 . 2 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) → 𝐼 = 𝐽))
180 oveq1 5849 . . 3 (𝐼 = 𝐽 → (𝐼 + 𝑆) = (𝐽 + 𝑆))
181180oveq1d 5857 . 2 (𝐼 = 𝐽 → ((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁))
182179, 181impbid1 141 1 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 967  w3a 968   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069  -cneg 8070   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  cq 9557  +crp 9589  ..^cfzo 10077   mod cmo 10257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator