ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restdis GIF version

Theorem restdis 14866
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)

Proof of Theorem restdis
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 distop 14767 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
21adantr 276 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝒫 𝐴 ∈ Top)
3 elpw2g 4240 . . . . 5 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
43biimpar 297 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ 𝒫 𝐴)
5 restopn2 14865 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
62, 4, 5syl2anc 411 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
7 velpw 3656 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
8 sstr 3232 . . . . . . . 8 ((𝑥𝐵𝐵𝐴) → 𝑥𝐴)
98expcom 116 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
109adantl 277 . . . . . 6 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥𝐴))
11 velpw 3656 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1210, 11imbitrrdi 162 . . . . 5 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥 ∈ 𝒫 𝐴))
1312pm4.71rd 394 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
147, 13bitrid 192 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
156, 14bitr4d 191 . 2 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵))
1615eqrdv 2227 1 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wss 3197  𝒫 cpw 3649  (class class class)co 6007  t crest 13280  Topctop 14679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-rest 13282  df-topgen 13301  df-top 14680  df-topon 14693  df-bases 14725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator