![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restdis | GIF version |
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
restdis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 12097 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
2 | 1 | adantr 272 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐴 ∈ Top) |
3 | elpw2g 4041 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
4 | 3 | biimpar 293 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝒫 𝐴) |
5 | restopn2 12195 | . . . 4 ⊢ ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) | |
6 | 2, 4, 5 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
7 | selpw 3483 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
8 | sstr 3071 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → 𝑥 ⊆ 𝐴) | |
9 | 8 | expcom 115 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) |
10 | 9 | adantl 273 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) |
11 | selpw 3483 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
12 | 10, 11 | syl6ibr 161 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 → 𝑥 ∈ 𝒫 𝐴)) |
13 | 12 | pm4.71rd 389 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
14 | 7, 13 | syl5bb 191 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
15 | 6, 14 | bitr4d 190 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵)) |
16 | 15 | eqrdv 2113 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 ⊆ wss 3037 𝒫 cpw 3476 (class class class)co 5728 ↾t crest 11963 Topctop 12007 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-rest 11965 df-topgen 11984 df-top 12008 df-topon 12021 df-bases 12053 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |