| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restdis | GIF version | ||
| Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| restdis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop 14601 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐴 ∈ Top) |
| 3 | elpw2g 4204 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 4 | 3 | biimpar 297 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝒫 𝐴) |
| 5 | restopn2 14699 | . . . 4 ⊢ ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) | |
| 6 | 2, 4, 5 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
| 7 | velpw 3624 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 8 | sstr 3202 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → 𝑥 ⊆ 𝐴) | |
| 9 | 8 | expcom 116 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) |
| 10 | 9 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) |
| 11 | velpw 3624 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 12 | 10, 11 | imbitrrdi 162 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 → 𝑥 ∈ 𝒫 𝐴)) |
| 13 | 12 | pm4.71rd 394 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
| 14 | 7, 13 | bitrid 192 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
| 15 | 6, 14 | bitr4d 191 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵)) |
| 16 | 15 | eqrdv 2204 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 𝒫 cpw 3617 (class class class)co 5951 ↾t crest 13115 Topctop 14513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-rest 13117 df-topgen 13136 df-top 14514 df-topon 14527 df-bases 14559 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |