![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > restdis | GIF version |
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
restdis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 13725 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐴 ∈ Top) |
3 | elpw2g 4158 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
4 | 3 | biimpar 297 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝒫 𝐴) |
5 | restopn2 13823 | . . . 4 ⊢ ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) | |
6 | 2, 4, 5 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
7 | velpw 3584 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
8 | sstr 3165 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → 𝑥 ⊆ 𝐴) | |
9 | 8 | expcom 116 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) |
10 | 9 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) |
11 | velpw 3584 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
12 | 10, 11 | imbitrrdi 162 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 → 𝑥 ∈ 𝒫 𝐴)) |
13 | 12 | pm4.71rd 394 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ⊆ 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
14 | 7, 13 | bitrid 192 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
15 | 6, 14 | bitr4d 191 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝒫 𝐴 ↾t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵)) |
16 | 15 | eqrdv 2175 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 𝒫 cpw 3577 (class class class)co 5878 ↾t crest 12694 Topctop 13637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-rest 12696 df-topgen 12715 df-top 13638 df-topon 13651 df-bases 13683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |