ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restdis GIF version

Theorem restdis 12280
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)

Proof of Theorem restdis
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 distop 12181 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
21adantr 274 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝒫 𝐴 ∈ Top)
3 elpw2g 4051 . . . . 5 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
43biimpar 295 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ 𝒫 𝐴)
5 restopn2 12279 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
62, 4, 5syl2anc 408 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
7 velpw 3487 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
8 sstr 3075 . . . . . . . 8 ((𝑥𝐵𝐵𝐴) → 𝑥𝐴)
98expcom 115 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
109adantl 275 . . . . . 6 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥𝐴))
11 velpw 3487 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1210, 11syl6ibr 161 . . . . 5 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥 ∈ 𝒫 𝐴))
1312pm4.71rd 391 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
147, 13syl5bb 191 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
156, 14bitr4d 190 . 2 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵))
1615eqrdv 2115 1 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wss 3041  𝒫 cpw 3480  (class class class)co 5742  t crest 12047  Topctop 12091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-rest 12049  df-topgen 12068  df-top 12092  df-topon 12105  df-bases 12137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator