| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fssres | GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5318 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fnssres 5432 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
| 3 | resss 5025 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
| 4 | rnss 4950 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐶) ⊆ 𝐹 → ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
| 6 | sstr 3232 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
| 7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
| 8 | 2, 7 | anim12i 338 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 9 | 8 | an32s 568 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 10 | 1, 9 | sylanb 284 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
| 11 | df-f 5318 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3197 ran crn 4717 ↾ cres 4718 Fn wfn 5309 ⟶wf 5310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-fun 5316 df-fn 5317 df-f 5318 |
| This theorem is referenced by: fssresd 5498 fssres2 5499 fresin 5500 f1ssres 5536 feqresmpt 5681 f2ndf 6362 elmapssres 6810 pmresg 6813 finomni 7295 fseq1p1m1 10278 seqf1oglem2 10729 wrdred1 11100 resmhm 13506 resghm 13783 hmeores 14974 limcdifap 15321 012of 16288 2o01f 16289 |
| Copyright terms: Public domain | W3C validator |