![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nqprrnd | GIF version |
Description: A cut produced from a rational is rounded. Lemma for nqprlu 7546. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprrnd | ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltbtwnnqq 7414 | . . . . . 6 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟)) | |
2 | ancom 266 | . . . . . . 7 ⊢ ((𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) | |
3 | 2 | rexbii 2484 | . . . . . 6 ⊢ (∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
4 | 1, 3 | bitri 184 | . . . . 5 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
5 | vex 2741 | . . . . . 6 ⊢ 𝑟 ∈ V | |
6 | breq2 4008 | . . . . . 6 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
7 | 5, 6 | elab 2882 | . . . . 5 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
8 | vex 2741 | . . . . . . . 8 ⊢ 𝑞 ∈ V | |
9 | breq2 4008 | . . . . . . . 8 ⊢ (𝑥 = 𝑞 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑞)) | |
10 | 8, 9 | elab 2882 | . . . . . . 7 ⊢ (𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞) |
11 | 10 | anbi2i 457 | . . . . . 6 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
12 | 11 | rexbii 2484 | . . . . 5 ⊢ (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
13 | 4, 7, 12 | 3bitr4i 212 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
14 | 13 | rgenw 2532 | . . 3 ⊢ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
15 | 14 | a1i 9 | . 2 ⊢ (𝐴 ∈ Q → ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
16 | ltbtwnnqq 7414 | . . . 4 ⊢ (𝑞 <Q 𝐴 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) | |
17 | breq1 4007 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
18 | 8, 17 | elab 2882 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
19 | breq1 4007 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → (𝑥 <Q 𝐴 ↔ 𝑟 <Q 𝐴)) | |
20 | 5, 19 | elab 2882 | . . . . . 6 ⊢ (𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑟 <Q 𝐴) |
21 | 20 | anbi2i 457 | . . . . 5 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
22 | 21 | rexbii 2484 | . . . 4 ⊢ (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
23 | 16, 18, 22 | 3bitr4i 212 | . . 3 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
24 | 23 | rgenw 2532 | . 2 ⊢ ∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
25 | 15, 24 | jctil 312 | 1 ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 class class class wbr 4004 Qcnq 7279 <Q cltq 7284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-eprel 4290 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-1o 6417 df-oadd 6421 df-omul 6422 df-er 6535 df-ec 6537 df-qs 6541 df-ni 7303 df-pli 7304 df-mi 7305 df-lti 7306 df-plpq 7343 df-mpq 7344 df-enq 7346 df-nqqs 7347 df-plqqs 7348 df-mqqs 7349 df-1nqqs 7350 df-rq 7351 df-ltnqqs 7352 |
This theorem is referenced by: nqprxx 7545 |
Copyright terms: Public domain | W3C validator |