| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nqprrnd | GIF version | ||
| Description: A cut produced from a rational is rounded. Lemma for nqprlu 7702. (Contributed by Jim Kingdon, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| nqprrnd | ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltbtwnnqq 7570 | . . . . . 6 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟)) | |
| 2 | ancom 266 | . . . . . . 7 ⊢ ((𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) | |
| 3 | 2 | rexbii 2517 | . . . . . 6 ⊢ (∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 4 | 1, 3 | bitri 184 | . . . . 5 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 5 | vex 2782 | . . . . . 6 ⊢ 𝑟 ∈ V | |
| 6 | breq2 4066 | . . . . . 6 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
| 7 | 5, 6 | elab 2927 | . . . . 5 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
| 8 | vex 2782 | . . . . . . . 8 ⊢ 𝑞 ∈ V | |
| 9 | breq2 4066 | . . . . . . . 8 ⊢ (𝑥 = 𝑞 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑞)) | |
| 10 | 8, 9 | elab 2927 | . . . . . . 7 ⊢ (𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞) |
| 11 | 10 | anbi2i 457 | . . . . . 6 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 12 | 11 | rexbii 2517 | . . . . 5 ⊢ (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 13 | 4, 7, 12 | 3bitr4i 212 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
| 14 | 13 | rgenw 2565 | . . 3 ⊢ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
| 15 | 14 | a1i 9 | . 2 ⊢ (𝐴 ∈ Q → ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
| 16 | ltbtwnnqq 7570 | . . . 4 ⊢ (𝑞 <Q 𝐴 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) | |
| 17 | breq1 4065 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
| 18 | 8, 17 | elab 2927 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
| 19 | breq1 4065 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → (𝑥 <Q 𝐴 ↔ 𝑟 <Q 𝐴)) | |
| 20 | 5, 19 | elab 2927 | . . . . . 6 ⊢ (𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑟 <Q 𝐴) |
| 21 | 20 | anbi2i 457 | . . . . 5 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
| 22 | 21 | rexbii 2517 | . . . 4 ⊢ (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
| 23 | 16, 18, 22 | 3bitr4i 212 | . . 3 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
| 24 | 23 | rgenw 2565 | . 2 ⊢ ∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
| 25 | 15, 24 | jctil 312 | 1 ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2180 {cab 2195 ∀wral 2488 ∃wrex 2489 class class class wbr 4062 Qcnq 7435 <Q cltq 7440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 |
| This theorem is referenced by: nqprxx 7701 |
| Copyright terms: Public domain | W3C validator |