Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqprrnd | GIF version |
Description: A cut produced from a rational is rounded. Lemma for nqprlu 7521. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprrnd | ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltbtwnnqq 7389 | . . . . . 6 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟)) | |
2 | ancom 266 | . . . . . . 7 ⊢ ((𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) | |
3 | 2 | rexbii 2482 | . . . . . 6 ⊢ (∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
4 | 1, 3 | bitri 184 | . . . . 5 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
5 | vex 2738 | . . . . . 6 ⊢ 𝑟 ∈ V | |
6 | breq2 4002 | . . . . . 6 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
7 | 5, 6 | elab 2879 | . . . . 5 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
8 | vex 2738 | . . . . . . . 8 ⊢ 𝑞 ∈ V | |
9 | breq2 4002 | . . . . . . . 8 ⊢ (𝑥 = 𝑞 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑞)) | |
10 | 8, 9 | elab 2879 | . . . . . . 7 ⊢ (𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞) |
11 | 10 | anbi2i 457 | . . . . . 6 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
12 | 11 | rexbii 2482 | . . . . 5 ⊢ (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
13 | 4, 7, 12 | 3bitr4i 212 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
14 | 13 | rgenw 2530 | . . 3 ⊢ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
15 | 14 | a1i 9 | . 2 ⊢ (𝐴 ∈ Q → ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
16 | ltbtwnnqq 7389 | . . . 4 ⊢ (𝑞 <Q 𝐴 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) | |
17 | breq1 4001 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
18 | 8, 17 | elab 2879 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
19 | breq1 4001 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → (𝑥 <Q 𝐴 ↔ 𝑟 <Q 𝐴)) | |
20 | 5, 19 | elab 2879 | . . . . . 6 ⊢ (𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑟 <Q 𝐴) |
21 | 20 | anbi2i 457 | . . . . 5 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
22 | 21 | rexbii 2482 | . . . 4 ⊢ (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
23 | 16, 18, 22 | 3bitr4i 212 | . . 3 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
24 | 23 | rgenw 2530 | . 2 ⊢ ∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
25 | 15, 24 | jctil 312 | 1 ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2146 {cab 2161 ∀wral 2453 ∃wrex 2454 class class class wbr 3998 Qcnq 7254 <Q cltq 7259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-pli 7279 df-mi 7280 df-lti 7281 df-plpq 7318 df-mpq 7319 df-enq 7321 df-nqqs 7322 df-plqqs 7323 df-mqqs 7324 df-1nqqs 7325 df-rq 7326 df-ltnqqs 7327 |
This theorem is referenced by: nqprxx 7520 |
Copyright terms: Public domain | W3C validator |