Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqprrnd | GIF version |
Description: A cut produced from a rational is rounded. Lemma for nqprlu 7488. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprrnd | ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltbtwnnqq 7356 | . . . . . 6 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟)) | |
2 | ancom 264 | . . . . . . 7 ⊢ ((𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) | |
3 | 2 | rexbii 2473 | . . . . . 6 ⊢ (∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
4 | 1, 3 | bitri 183 | . . . . 5 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
5 | vex 2729 | . . . . . 6 ⊢ 𝑟 ∈ V | |
6 | breq2 3986 | . . . . . 6 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
7 | 5, 6 | elab 2870 | . . . . 5 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
8 | vex 2729 | . . . . . . . 8 ⊢ 𝑞 ∈ V | |
9 | breq2 3986 | . . . . . . . 8 ⊢ (𝑥 = 𝑞 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑞)) | |
10 | 8, 9 | elab 2870 | . . . . . . 7 ⊢ (𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞) |
11 | 10 | anbi2i 453 | . . . . . 6 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
12 | 11 | rexbii 2473 | . . . . 5 ⊢ (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
13 | 4, 7, 12 | 3bitr4i 211 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
14 | 13 | rgenw 2521 | . . 3 ⊢ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
15 | 14 | a1i 9 | . 2 ⊢ (𝐴 ∈ Q → ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
16 | ltbtwnnqq 7356 | . . . 4 ⊢ (𝑞 <Q 𝐴 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) | |
17 | breq1 3985 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
18 | 8, 17 | elab 2870 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
19 | breq1 3985 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → (𝑥 <Q 𝐴 ↔ 𝑟 <Q 𝐴)) | |
20 | 5, 19 | elab 2870 | . . . . . 6 ⊢ (𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑟 <Q 𝐴) |
21 | 20 | anbi2i 453 | . . . . 5 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
22 | 21 | rexbii 2473 | . . . 4 ⊢ (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
23 | 16, 18, 22 | 3bitr4i 211 | . . 3 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
24 | 23 | rgenw 2521 | . 2 ⊢ ∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
25 | 15, 24 | jctil 310 | 1 ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∃wrex 2445 class class class wbr 3982 Qcnq 7221 <Q cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 |
This theorem is referenced by: nqprxx 7487 |
Copyright terms: Public domain | W3C validator |