| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nqprrnd | GIF version | ||
| Description: A cut produced from a rational is rounded. Lemma for nqprlu 7667. (Contributed by Jim Kingdon, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| nqprrnd | ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltbtwnnqq 7535 | . . . . . 6 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟)) | |
| 2 | ancom 266 | . . . . . . 7 ⊢ ((𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) | |
| 3 | 2 | rexbii 2514 | . . . . . 6 ⊢ (∃𝑞 ∈ Q (𝐴 <Q 𝑞 ∧ 𝑞 <Q 𝑟) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 4 | 1, 3 | bitri 184 | . . . . 5 ⊢ (𝐴 <Q 𝑟 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 5 | vex 2776 | . . . . . 6 ⊢ 𝑟 ∈ V | |
| 6 | breq2 4051 | . . . . . 6 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
| 7 | 5, 6 | elab 2918 | . . . . 5 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
| 8 | vex 2776 | . . . . . . . 8 ⊢ 𝑞 ∈ V | |
| 9 | breq2 4051 | . . . . . . . 8 ⊢ (𝑥 = 𝑞 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑞)) | |
| 10 | 8, 9 | elab 2918 | . . . . . . 7 ⊢ (𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞) |
| 11 | 10 | anbi2i 457 | . . . . . 6 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 12 | 11 | rexbii 2514 | . . . . 5 ⊢ (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝐴 <Q 𝑞)) |
| 13 | 4, 7, 12 | 3bitr4i 212 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
| 14 | 13 | rgenw 2562 | . . 3 ⊢ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
| 15 | 14 | a1i 9 | . 2 ⊢ (𝐴 ∈ Q → ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
| 16 | ltbtwnnqq 7535 | . . . 4 ⊢ (𝑞 <Q 𝐴 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) | |
| 17 | breq1 4050 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
| 18 | 8, 17 | elab 2918 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
| 19 | breq1 4050 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → (𝑥 <Q 𝐴 ↔ 𝑟 <Q 𝐴)) | |
| 20 | 5, 19 | elab 2918 | . . . . . 6 ⊢ (𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑟 <Q 𝐴) |
| 21 | 20 | anbi2i 457 | . . . . 5 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
| 22 | 21 | rexbii 2514 | . . . 4 ⊢ (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝐴)) |
| 23 | 16, 18, 22 | 3bitr4i 212 | . . 3 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
| 24 | 23 | rgenw 2562 | . 2 ⊢ ∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) |
| 25 | 15, 24 | jctil 312 | 1 ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∃wrex 2486 class class class wbr 4047 Qcnq 7400 <Q cltq 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 |
| This theorem is referenced by: nqprxx 7666 |
| Copyright terms: Public domain | W3C validator |