ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprdisj GIF version

Theorem nqprdisj 7664
Description: A cut produced from a rational is disjoint. Lemma for nqprlu 7667. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprdisj (𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
Distinct variable group:   𝑥,𝐴,𝑞

Proof of Theorem nqprdisj
StepHypRef Expression
1 ltsonq 7518 . . . . 5 <Q Or Q
2 ltrelnq 7485 . . . . 5 <Q ⊆ (Q × Q)
31, 2son2lpi 5084 . . . 4 ¬ (𝑞 <Q 𝐴𝐴 <Q 𝑞)
4 vex 2776 . . . . . 6 𝑞 ∈ V
5 breq1 4050 . . . . . 6 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
64, 5elab 2918 . . . . 5 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
7 breq2 4051 . . . . . 6 (𝑥 = 𝑞 → (𝐴 <Q 𝑥𝐴 <Q 𝑞))
84, 7elab 2918 . . . . 5 (𝑞 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞)
96, 8anbi12i 460 . . . 4 ((𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝐴𝐴 <Q 𝑞))
103, 9mtbir 673 . . 3 ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥})
1110rgenw 2562 . 2 𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥})
1211a1i 9 1 (𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2177  {cab 2192  wral 2485   class class class wbr 4047  Qcnq 7400   <Q cltq 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-mi 7426  df-lti 7427  df-enq 7467  df-nqqs 7468  df-ltnqqs 7473
This theorem is referenced by:  nqprxx  7666
  Copyright terms: Public domain W3C validator