Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqprdisj | GIF version |
Description: A cut produced from a rational is disjoint. Lemma for nqprlu 7521. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprdisj | ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsonq 7372 | . . . . 5 ⊢ <Q Or Q | |
2 | ltrelnq 7339 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
3 | 1, 2 | son2lpi 5017 | . . . 4 ⊢ ¬ (𝑞 <Q 𝐴 ∧ 𝐴 <Q 𝑞) |
4 | vex 2738 | . . . . . 6 ⊢ 𝑞 ∈ V | |
5 | breq1 4001 | . . . . . 6 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
6 | 4, 5 | elab 2879 | . . . . 5 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
7 | breq2 4002 | . . . . . 6 ⊢ (𝑥 = 𝑞 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑞)) | |
8 | 4, 7 | elab 2879 | . . . . 5 ⊢ (𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞) |
9 | 6, 8 | anbi12i 460 | . . . 4 ⊢ ((𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝐴 ∧ 𝐴 <Q 𝑞)) |
10 | 3, 9 | mtbir 671 | . . 3 ⊢ ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
11 | 10 | rgenw 2530 | . 2 ⊢ ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
12 | 11 | a1i 9 | 1 ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2146 {cab 2161 ∀wral 2453 class class class wbr 3998 Qcnq 7254 <Q cltq 7259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-mi 7280 df-lti 7281 df-enq 7321 df-nqqs 7322 df-ltnqqs 7327 |
This theorem is referenced by: nqprxx 7520 |
Copyright terms: Public domain | W3C validator |