![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nqprdisj | GIF version |
Description: A cut produced from a rational is disjoint. Lemma for nqprlu 7563. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprdisj | ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsonq 7414 | . . . . 5 ⊢ <Q Or Q | |
2 | ltrelnq 7381 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
3 | 1, 2 | son2lpi 5039 | . . . 4 ⊢ ¬ (𝑞 <Q 𝐴 ∧ 𝐴 <Q 𝑞) |
4 | vex 2754 | . . . . . 6 ⊢ 𝑞 ∈ V | |
5 | breq1 4020 | . . . . . 6 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
6 | 4, 5 | elab 2895 | . . . . 5 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
7 | breq2 4021 | . . . . . 6 ⊢ (𝑥 = 𝑞 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑞)) | |
8 | 4, 7 | elab 2895 | . . . . 5 ⊢ (𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞) |
9 | 6, 8 | anbi12i 460 | . . . 4 ⊢ ((𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝐴 ∧ 𝐴 <Q 𝑞)) |
10 | 3, 9 | mtbir 672 | . . 3 ⊢ ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
11 | 10 | rgenw 2544 | . 2 ⊢ ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
12 | 11 | a1i 9 | 1 ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2159 {cab 2174 ∀wral 2467 class class class wbr 4017 Qcnq 7296 <Q cltq 7301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-iinf 4601 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-reu 2474 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-tr 4116 df-eprel 4303 df-id 4307 df-po 4310 df-iso 4311 df-iord 4380 df-on 4382 df-suc 4385 df-iom 4604 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-ov 5893 df-oprab 5894 df-mpo 5895 df-1st 6158 df-2nd 6159 df-recs 6323 df-irdg 6388 df-oadd 6438 df-omul 6439 df-er 6552 df-ec 6554 df-qs 6558 df-ni 7320 df-mi 7322 df-lti 7323 df-enq 7363 df-nqqs 7364 df-ltnqqs 7369 |
This theorem is referenced by: nqprxx 7562 |
Copyright terms: Public domain | W3C validator |