ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprdisj GIF version

Theorem nqprdisj 7604
Description: A cut produced from a rational is disjoint. Lemma for nqprlu 7607. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprdisj (𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
Distinct variable group:   𝑥,𝐴,𝑞

Proof of Theorem nqprdisj
StepHypRef Expression
1 ltsonq 7458 . . . . 5 <Q Or Q
2 ltrelnq 7425 . . . . 5 <Q ⊆ (Q × Q)
31, 2son2lpi 5062 . . . 4 ¬ (𝑞 <Q 𝐴𝐴 <Q 𝑞)
4 vex 2763 . . . . . 6 𝑞 ∈ V
5 breq1 4032 . . . . . 6 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
64, 5elab 2904 . . . . 5 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
7 breq2 4033 . . . . . 6 (𝑥 = 𝑞 → (𝐴 <Q 𝑥𝐴 <Q 𝑞))
84, 7elab 2904 . . . . 5 (𝑞 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑞)
96, 8anbi12i 460 . . . 4 ((𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ↔ (𝑞 <Q 𝐴𝐴 <Q 𝑞))
103, 9mtbir 672 . . 3 ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥})
1110rgenw 2549 . 2 𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥})
1211a1i 9 1 (𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2164  {cab 2179  wral 2472   class class class wbr 4029  Qcnq 7340   <Q cltq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-lti 7367  df-enq 7407  df-nqqs 7408  df-ltnqqs 7413
This theorem is referenced by:  nqprxx  7606
  Copyright terms: Public domain W3C validator