ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpti GIF version

Theorem fnmpti 5404
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1 𝐵 ∈ V
fnmpti.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmpti 𝐹 Fn 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fnmpti
StepHypRef Expression
1 fnmpti.1 . . 3 𝐵 ∈ V
21rgenw 2561 . 2 𝑥𝐴 𝐵 ∈ V
3 fnmpti.2 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptfng 5401 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
52, 4mpbi 145 1 𝐹 Fn 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  cmpt 4105   Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-fun 5273  df-fn 5274
This theorem is referenced by:  dmmpti  5405  fconst  5471  eufnfv  5815  idref  5825  fo1st  6243  fo2nd  6244  reldm  6272  oafnex  6530  fnoei  6538  oeiexg  6539  mapsnf1o2  6783  nninfctlemfo  12361  1arith  12690  slotslfn  12858  topnfn  13076  fn0g  13207  fnmgp  13684  rlmfn  14215  blfn  14313  fncld  14570  xmetunirn  14830  nnnninfex  15959  nninfnfiinf  15960
  Copyright terms: Public domain W3C validator