ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpti GIF version

Theorem fnmpti 5403
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1 𝐵 ∈ V
fnmpti.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmpti 𝐹 Fn 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fnmpti
StepHypRef Expression
1 fnmpti.1 . . 3 𝐵 ∈ V
21rgenw 2560 . 2 𝑥𝐴 𝐵 ∈ V
3 fnmpti.2 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptfng 5400 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
52, 4mpbi 145 1 𝐹 Fn 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  cmpt 4104   Fn wfn 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-fun 5272  df-fn 5273
This theorem is referenced by:  dmmpti  5404  fconst  5470  eufnfv  5814  idref  5824  fo1st  6242  fo2nd  6243  reldm  6271  oafnex  6529  fnoei  6537  oeiexg  6538  mapsnf1o2  6782  nninfctlemfo  12332  1arith  12661  slotslfn  12829  topnfn  13047  fn0g  13178  fnmgp  13655  rlmfn  14186  blfn  14284  fncld  14541  xmetunirn  14801  nnnninfex  15921  nninfnfiinf  15922
  Copyright terms: Public domain W3C validator