ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpti GIF version

Theorem fnmpti 5424
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1 𝐵 ∈ V
fnmpti.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmpti 𝐹 Fn 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fnmpti
StepHypRef Expression
1 fnmpti.1 . . 3 𝐵 ∈ V
21rgenw 2563 . 2 𝑥𝐴 𝐵 ∈ V
3 fnmpti.2 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptfng 5421 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
52, 4mpbi 145 1 𝐹 Fn 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  cmpt 4121   Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293
This theorem is referenced by:  dmmpti  5425  fconst  5493  eufnfv  5838  idref  5848  fo1st  6266  fo2nd  6267  reldm  6295  oafnex  6553  fnoei  6561  oeiexg  6562  mapsnf1o2  6806  nninfctlemfo  12476  1arith  12805  slotslfn  12973  topnfn  13191  fn0g  13322  fnmgp  13799  rlmfn  14330  blfn  14428  fncld  14685  xmetunirn  14945  nnnninfex  16161  nninfnfiinf  16162
  Copyright terms: Public domain W3C validator