| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmpti | GIF version | ||
| Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fnmpti | ⊢ 𝐹 Fn 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | rgenw 2561 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 3 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptfng 5401 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
| 5 | 2, 4 | mpbi 145 | 1 ⊢ 𝐹 Fn 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 ∀wral 2484 Vcvv 2772 ↦ cmpt 4105 Fn wfn 5266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-fun 5273 df-fn 5274 |
| This theorem is referenced by: dmmpti 5405 fconst 5471 eufnfv 5815 idref 5825 fo1st 6243 fo2nd 6244 reldm 6272 oafnex 6530 fnoei 6538 oeiexg 6539 mapsnf1o2 6783 nninfctlemfo 12361 1arith 12690 slotslfn 12858 topnfn 13076 fn0g 13207 fnmgp 13684 rlmfn 14215 blfn 14313 fncld 14570 xmetunirn 14830 nnnninfex 15959 nninfnfiinf 15960 |
| Copyright terms: Public domain | W3C validator |