| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodring | GIF version | ||
| Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2196 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2196 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2196 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2196 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2196 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2196 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 13923 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp2bi 1015 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 .rcmulr 12781 Scalarcsca 12783 ·𝑠 cvsca 12784 Grpcgrp 13202 1rcur 13591 Ringcrg 13628 LModclmod 13919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-lmod 13921 |
| This theorem is referenced by: lmodfgrp 13928 lmodmcl 13932 lmod0cl 13946 lmod1cl 13947 lmod0vs 13953 lmodvs0 13954 lmodvsmmulgdi 13955 lmodvsneg 13963 lmodsubvs 13975 lmodsubdi 13976 lmodsubdir 13977 lssvnegcl 14008 islss3 14011 |
| Copyright terms: Public domain | W3C validator |