ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0q4123 GIF version

Theorem coseq0q4123 12928
Description: Location of the zeroes of cosine in (-(π / 2)(,)(3 · (π / 2))). (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
coseq0q4123 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))

Proof of Theorem coseq0q4123
StepHypRef Expression
1 0re 7773 . . . . 5 0 ∈ ℝ
21ltnri 7863 . . . 4 ¬ 0 < 0
3 elioore 9702 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ)
43adantr 274 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
5 halfpire 12886 . . . . . 6 (π / 2) ∈ ℝ
6 reaplt 8357 . . . . . 6 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 # (π / 2) ↔ (𝐴 < (π / 2) ∨ (π / 2) < 𝐴)))
74, 5, 6sylancl 409 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 # (π / 2) ↔ (𝐴 < (π / 2) ∨ (π / 2) < 𝐴)))
83adantr 274 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 ∈ ℝ)
9 neghalfpirx 12888 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ*
10 3re 8801 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1110, 5remulcli 7787 . . . . . . . . . . . . . . 15 (3 · (π / 2)) ∈ ℝ
1211rexri 7830 . . . . . . . . . . . . . 14 (3 · (π / 2)) ∈ ℝ*
13 elioo2 9711 . . . . . . . . . . . . . 14 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
149, 12, 13mp2an 422 . . . . . . . . . . . . 13 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
1514simp2bi 997 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → -(π / 2) < 𝐴)
1615adantr 274 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → -(π / 2) < 𝐴)
17 simpr 109 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 < (π / 2))
189a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → -(π / 2) ∈ ℝ*)
195rexri 7830 . . . . . . . . . . . 12 (π / 2) ∈ ℝ*
20 elioo2 9711 . . . . . . . . . . . 12 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
2118, 19, 20sylancl 409 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
228, 16, 17, 21mpbir3and 1164 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
23 cosq14gt0 12926 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))
2422, 23syl 14 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))
2524adantlr 468 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))
26 simplr 519 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) = 0)
2725, 26breqtrd 3954 . . . . . . 7 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 0 < 0)
2827ex 114 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 < (π / 2) → 0 < 0))
29 simplr 519 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) = 0)
303adantr 274 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 ∈ ℝ)
31 simpr 109 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → (π / 2) < 𝐴)
3214simp3bi 998 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2)))
3332adantr 274 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 < (3 · (π / 2)))
34 elioo2 9711 . . . . . . . . . . . 12 (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
3519, 12, 34mp2an 422 . . . . . . . . . . 11 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2))))
3630, 31, 33, 35syl3anbrc 1165 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 ∈ ((π / 2)(,)(3 · (π / 2))))
37 cosq23lt0 12927 . . . . . . . . . 10 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
3836, 37syl 14 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → (cos‘𝐴) < 0)
3938adantlr 468 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) < 0)
4029, 39eqbrtrrd 3952 . . . . . . 7 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → 0 < 0)
4140ex 114 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ((π / 2) < 𝐴 → 0 < 0))
4228, 41jaod 706 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ((𝐴 < (π / 2) ∨ (π / 2) < 𝐴) → 0 < 0))
437, 42sylbid 149 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 # (π / 2) → 0 < 0))
442, 43mtoi 653 . . 3 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ¬ 𝐴 # (π / 2))
453recnd 7801 . . . 4 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ)
46 picn 12881 . . . . 5 π ∈ ℂ
47 halfcl 8953 . . . . 5 (π ∈ ℂ → (π / 2) ∈ ℂ)
4846, 47mp1i 10 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (π / 2) ∈ ℂ)
49 apti 8391 . . . 4 ((𝐴 ∈ ℂ ∧ (π / 2) ∈ ℂ) → (𝐴 = (π / 2) ↔ ¬ 𝐴 # (π / 2)))
5045, 48, 49syl2an2r 584 . . 3 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 = (π / 2) ↔ ¬ 𝐴 # (π / 2)))
5144, 50mpbird 166 . 2 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → 𝐴 = (π / 2))
52 fveq2 5421 . . . 4 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
53 coshalfpi 12891 . . . 4 (cos‘(π / 2)) = 0
5452, 53syl6eq 2188 . . 3 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
5554adantl 275 . 2 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 = (π / 2)) → (cos‘𝐴) = 0)
5651, 55impbida 585 1 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7625  cr 7626  0cc0 7627   · cmul 7632  *cxr 7806   < clt 7807  -cneg 7941   # cap 8350   / cdiv 8439  2c2 8778  3c3 8779  (,)cioo 9678  cosccos 11358  πcpi 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-rest 12132  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-met 12168  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-ntr 12275  df-cn 12367  df-cnp 12368  df-tx 12432  df-cncf 12737  df-limced 12804  df-dvap 12805
This theorem is referenced by:  coseq00topi  12929  coseq0negpitopi  12930
  Copyright terms: Public domain W3C validator