ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0q4123 GIF version

Theorem coseq0q4123 15381
Description: Location of the zeroes of cosine in (-(π / 2)(,)(3 · (π / 2))). (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
coseq0q4123 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))

Proof of Theorem coseq0q4123
StepHypRef Expression
1 0re 8092 . . . . 5 0 ∈ ℝ
21ltnri 8185 . . . 4 ¬ 0 < 0
3 elioore 10054 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ)
43adantr 276 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
5 halfpire 15339 . . . . . 6 (π / 2) ∈ ℝ
6 reaplt 8681 . . . . . 6 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 # (π / 2) ↔ (𝐴 < (π / 2) ∨ (π / 2) < 𝐴)))
74, 5, 6sylancl 413 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 # (π / 2) ↔ (𝐴 < (π / 2) ∨ (π / 2) < 𝐴)))
83adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 ∈ ℝ)
9 neghalfpirx 15341 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ*
10 3re 9130 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1110, 5remulcli 8106 . . . . . . . . . . . . . . 15 (3 · (π / 2)) ∈ ℝ
1211rexri 8150 . . . . . . . . . . . . . 14 (3 · (π / 2)) ∈ ℝ*
13 elioo2 10063 . . . . . . . . . . . . . 14 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
149, 12, 13mp2an 426 . . . . . . . . . . . . 13 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
1514simp2bi 1016 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → -(π / 2) < 𝐴)
1615adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → -(π / 2) < 𝐴)
17 simpr 110 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 < (π / 2))
189a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → -(π / 2) ∈ ℝ*)
195rexri 8150 . . . . . . . . . . . 12 (π / 2) ∈ ℝ*
20 elioo2 10063 . . . . . . . . . . . 12 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
2118, 19, 20sylancl 413 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
228, 16, 17, 21mpbir3and 1183 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
23 cosq14gt0 15379 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))
2422, 23syl 14 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))
2524adantlr 477 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))
26 simplr 528 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) = 0)
2725, 26breqtrd 4077 . . . . . . 7 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 0 < 0)
2827ex 115 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 < (π / 2) → 0 < 0))
29 simplr 528 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) = 0)
303adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 ∈ ℝ)
31 simpr 110 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → (π / 2) < 𝐴)
3214simp3bi 1017 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2)))
3332adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 < (3 · (π / 2)))
34 elioo2 10063 . . . . . . . . . . . 12 (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
3519, 12, 34mp2an 426 . . . . . . . . . . 11 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2))))
3630, 31, 33, 35syl3anbrc 1184 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 ∈ ((π / 2)(,)(3 · (π / 2))))
37 cosq23lt0 15380 . . . . . . . . . 10 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
3836, 37syl 14 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → (cos‘𝐴) < 0)
3938adantlr 477 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) < 0)
4029, 39eqbrtrrd 4075 . . . . . . 7 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → 0 < 0)
4140ex 115 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ((π / 2) < 𝐴 → 0 < 0))
4228, 41jaod 719 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ((𝐴 < (π / 2) ∨ (π / 2) < 𝐴) → 0 < 0))
437, 42sylbid 150 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 # (π / 2) → 0 < 0))
442, 43mtoi 666 . . 3 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ¬ 𝐴 # (π / 2))
453recnd 8121 . . . 4 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ)
46 picn 15334 . . . . 5 π ∈ ℂ
47 halfcl 9283 . . . . 5 (π ∈ ℂ → (π / 2) ∈ ℂ)
4846, 47mp1i 10 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (π / 2) ∈ ℂ)
49 apti 8715 . . . 4 ((𝐴 ∈ ℂ ∧ (π / 2) ∈ ℂ) → (𝐴 = (π / 2) ↔ ¬ 𝐴 # (π / 2)))
5045, 48, 49syl2an2r 595 . . 3 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 = (π / 2) ↔ ¬ 𝐴 # (π / 2)))
5144, 50mpbird 167 . 2 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → 𝐴 = (π / 2))
52 fveq2 5589 . . . 4 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
53 coshalfpi 15344 . . . 4 (cos‘(π / 2)) = 0
5452, 53eqtrdi 2255 . . 3 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
5554adantl 277 . 2 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 = (π / 2)) → (cos‘𝐴) = 0)
5651, 55impbida 596 1 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945   · cmul 7950  *cxr 8126   < clt 8127  -cneg 8264   # cap 8674   / cdiv 8765  2c2 9107  3c3 9108  (,)cioo 10030  cosccos 12031  πcpi 12033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065  ax-pre-suploc 8066  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-map 6750  df-pm 6751  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-ioo 10034  df-ioc 10035  df-ico 10036  df-icc 10037  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-shft 11201  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034  df-sin 12036  df-cos 12037  df-pi 12039  df-rest 13148  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590  df-ntr 14643  df-cn 14735  df-cnp 14736  df-tx 14800  df-cncf 15118  df-limced 15203  df-dvap 15204
This theorem is referenced by:  coseq00topi  15382  coseq0negpitopi  15383
  Copyright terms: Public domain W3C validator