ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq0q4123 GIF version

Theorem coseq0q4123 14732
Description: Location of the zeroes of cosine in (-(π / 2)(,)(3 · (π / 2))). (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
coseq0q4123 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))

Proof of Theorem coseq0q4123
StepHypRef Expression
1 0re 7988 . . . . 5 0 ∈ ℝ
21ltnri 8081 . . . 4 ¬ 0 < 0
3 elioore 9944 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℝ)
43adantr 276 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
5 halfpire 14690 . . . . . 6 (π / 2) ∈ ℝ
6 reaplt 8576 . . . . . 6 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 # (π / 2) ↔ (𝐴 < (π / 2) ∨ (π / 2) < 𝐴)))
74, 5, 6sylancl 413 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 # (π / 2) ↔ (𝐴 < (π / 2) ∨ (π / 2) < 𝐴)))
83adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 ∈ ℝ)
9 neghalfpirx 14692 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ*
10 3re 9024 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1110, 5remulcli 8002 . . . . . . . . . . . . . . 15 (3 · (π / 2)) ∈ ℝ
1211rexri 8046 . . . . . . . . . . . . . 14 (3 · (π / 2)) ∈ ℝ*
13 elioo2 9953 . . . . . . . . . . . . . 14 ((-(π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
149, 12, 13mp2an 426 . . . . . . . . . . . . 13 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (3 · (π / 2))))
1514simp2bi 1015 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → -(π / 2) < 𝐴)
1615adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → -(π / 2) < 𝐴)
17 simpr 110 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 < (π / 2))
189a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → -(π / 2) ∈ ℝ*)
195rexri 8046 . . . . . . . . . . . 12 (π / 2) ∈ ℝ*
20 elioo2 9953 . . . . . . . . . . . 12 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
2118, 19, 20sylancl 413 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
228, 16, 17, 21mpbir3and 1182 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
23 cosq14gt0 14730 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))
2422, 23syl 14 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))
2524adantlr 477 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))
26 simplr 528 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) = 0)
2725, 26breqtrd 4044 . . . . . . 7 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 0 < 0)
2827ex 115 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 < (π / 2) → 0 < 0))
29 simplr 528 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) = 0)
303adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 ∈ ℝ)
31 simpr 110 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → (π / 2) < 𝐴)
3214simp3bi 1016 . . . . . . . . . . . 12 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 < (3 · (π / 2)))
3332adantr 276 . . . . . . . . . . 11 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 < (3 · (π / 2)))
34 elioo2 9953 . . . . . . . . . . . 12 (((π / 2) ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2)))))
3519, 12, 34mp2an 426 . . . . . . . . . . 11 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < (3 · (π / 2))))
3630, 31, 33, 35syl3anbrc 1183 . . . . . . . . . 10 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → 𝐴 ∈ ((π / 2)(,)(3 · (π / 2))))
37 cosq23lt0 14731 . . . . . . . . . 10 (𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
3836, 37syl 14 . . . . . . . . 9 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (π / 2) < 𝐴) → (cos‘𝐴) < 0)
3938adantlr 477 . . . . . . . 8 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) < 0)
4029, 39eqbrtrrd 4042 . . . . . . 7 (((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → 0 < 0)
4140ex 115 . . . . . 6 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ((π / 2) < 𝐴 → 0 < 0))
4228, 41jaod 718 . . . . 5 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ((𝐴 < (π / 2) ∨ (π / 2) < 𝐴) → 0 < 0))
437, 42sylbid 150 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 # (π / 2) → 0 < 0))
442, 43mtoi 665 . . 3 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → ¬ 𝐴 # (π / 2))
453recnd 8017 . . . 4 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → 𝐴 ∈ ℂ)
46 picn 14685 . . . . 5 π ∈ ℂ
47 halfcl 9176 . . . . 5 (π ∈ ℂ → (π / 2) ∈ ℂ)
4846, 47mp1i 10 . . . 4 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (π / 2) ∈ ℂ)
49 apti 8610 . . . 4 ((𝐴 ∈ ℂ ∧ (π / 2) ∈ ℂ) → (𝐴 = (π / 2) ↔ ¬ 𝐴 # (π / 2)))
5045, 48, 49syl2an2r 595 . . 3 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → (𝐴 = (π / 2) ↔ ¬ 𝐴 # (π / 2)))
5144, 50mpbird 167 . 2 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ (cos‘𝐴) = 0) → 𝐴 = (π / 2))
52 fveq2 5534 . . . 4 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
53 coshalfpi 14695 . . . 4 (cos‘(π / 2)) = 0
5452, 53eqtrdi 2238 . . 3 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
5554adantl 277 . 2 ((𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) ∧ 𝐴 = (π / 2)) → (cos‘𝐴) = 0)
5651, 55impbida 596 1 (𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  cr 7841  0cc0 7842   · cmul 7847  *cxr 8022   < clt 8023  -cneg 8160   # cap 8569   / cdiv 8660  2c2 9001  3c3 9002  (,)cioo 9920  cosccos 11688  πcpi 11690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962  ax-pre-suploc 7963  ax-addf 7964  ax-mulf 7965
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-of 6107  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-map 6677  df-pm 6678  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-9 9016  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-ioo 9924  df-ioc 9925  df-ico 9926  df-icc 9927  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-bc 10763  df-ihash 10791  df-shft 10859  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-sin 11693  df-cos 11694  df-pi 11696  df-rest 12749  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-ntr 14073  df-cn 14165  df-cnp 14166  df-tx 14230  df-cncf 14535  df-limced 14602  df-dvap 14603
This theorem is referenced by:  coseq00topi  14733  coseq0negpitopi  14734
  Copyright terms: Public domain W3C validator