Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzelz | GIF version |
Description: A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzelz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9424 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | 1 | simp2bi 998 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2125 class class class wbr 3961 ‘cfv 5163 ≤ cle 7892 ℤcz 9146 ℤ≥cuz 9418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-cnex 7802 ax-resscn 7803 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-ov 5817 df-neg 8028 df-z 9147 df-uz 9419 |
This theorem is referenced by: eluzelre 9428 uztrn 9434 uzneg 9436 uzssz 9437 uzss 9438 eluzp1l 9442 eluzaddi 9444 eluzsubi 9445 eluzadd 9446 eluzsub 9447 uzm1 9448 uzin 9450 uzind4 9478 uz2mulcl 9497 elfz5 9898 elfzel2 9904 elfzelz 9906 eluzfz2 9912 peano2fzr 9917 fzsplit2 9930 fzopth 9941 fzsuc 9949 elfzp1 9952 fzdifsuc 9961 uzsplit 9972 uzdisj 9973 fzm1 9980 fzneuz 9981 uznfz 9983 nn0disj 10015 elfzo3 10040 fzoss2 10049 fzouzsplit 10056 eluzgtdifelfzo 10074 fzosplitsnm1 10086 fzofzp1b 10105 elfzonelfzo 10107 fzosplitsn 10110 fzisfzounsn 10113 mulp1mod1 10242 m1modge3gt1 10248 frec2uzltd 10280 frecfzen2 10304 uzennn 10313 uzsinds 10319 seq3fveq2 10346 seq3feq2 10347 seq3shft2 10350 monoord 10353 monoord2 10354 ser3mono 10355 seq3split 10356 iseqf1olemjpcl 10372 iseqf1olemqpcl 10373 seq3f1olemqsumk 10376 seq3f1olemp 10379 seq3f1oleml 10380 seq3f1o 10381 seq3id 10385 seq3z 10388 fser0const 10393 leexp2a 10450 expnlbnd2 10521 hashfz 10672 hashfzo 10673 hashfzp1 10675 seq3coll 10690 seq3shft 10715 rexuz3 10867 r19.2uz 10870 cau4 10993 caubnd2 10994 clim 11155 climshft2 11180 climaddc1 11203 climmulc2 11205 climsubc1 11206 climsubc2 11207 clim2ser 11211 clim2ser2 11212 iserex 11213 climlec2 11215 climub 11218 climcau 11221 climcaucn 11225 serf0 11226 sumrbdclem 11251 fsum3cvg 11252 summodclem2a 11255 zsumdc 11258 fsum3 11261 fisumss 11266 fsum3cvg2 11268 fsum3ser 11271 fsumcl2lem 11272 fsumadd 11280 fsumm1 11290 fzosump1 11291 fsum1p 11292 fsump1 11294 fsummulc2 11322 telfsumo 11340 fsumparts 11344 iserabs 11349 binomlem 11357 isumshft 11364 isumsplit 11365 isumrpcl 11368 divcnv 11371 trireciplem 11374 geosergap 11380 geolim2 11386 cvgratnnlemseq 11400 cvgratnnlemabsle 11401 cvgratnnlemsumlt 11402 cvgratnnlemrate 11404 cvgratz 11406 cvgratgt0 11407 mertenslemi1 11409 clim2divap 11414 prodrbdclem 11445 fproddccvg 11446 prodmodclem3 11449 prodmodclem2a 11450 zproddc 11453 fprodntrivap 11458 fprodssdc 11464 fprodm1 11472 fprod1p 11473 fprodp1 11474 fprodabs 11490 fprodeq0 11491 efgt1p2 11569 zsupcllemstep 11805 infssuzex 11809 dvdsbnd 11812 ncoprmgcdne1b 11937 isprm3 11966 prmind2 11968 nprm 11971 dvdsprm 11984 exprmfct 11985 phibndlem 12059 phibnd 12060 dfphi2 12063 hashdvds 12064 relogbval 13207 relogbzcl 13208 nnlogbexp 13215 logblt 13218 logbgcd1irr 13223 supfz 13580 |
Copyright terms: Public domain | W3C validator |