Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzelz | GIF version |
Description: A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzelz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9468 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | 1 | simp2bi 1003 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3981 ‘cfv 5187 ≤ cle 7930 ℤcz 9187 ℤ≥cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 df-uz 9463 |
This theorem is referenced by: eluzelre 9472 uztrn 9478 uzneg 9480 uzssz 9481 uzss 9482 eluzp1l 9486 eluzaddi 9488 eluzsubi 9489 eluzadd 9490 eluzsub 9491 uzm1 9492 uzin 9494 uzind4 9522 uz2mulcl 9542 elfz5 9948 elfzel2 9954 elfzelz 9956 eluzfz2 9963 peano2fzr 9968 fzsplit2 9981 fzopth 9992 fzsuc 10000 elfzp1 10003 fzdifsuc 10012 uzsplit 10023 uzdisj 10024 fzm1 10031 fzneuz 10032 uznfz 10034 nn0disj 10069 elfzo3 10094 fzoss2 10103 fzouzsplit 10110 eluzgtdifelfzo 10128 fzosplitsnm1 10140 fzofzp1b 10159 elfzonelfzo 10161 fzosplitsn 10164 fzisfzounsn 10167 mulp1mod1 10296 m1modge3gt1 10302 frec2uzltd 10334 frecfzen2 10358 uzennn 10367 uzsinds 10373 seq3fveq2 10400 seq3feq2 10401 seq3shft2 10404 monoord 10407 monoord2 10408 ser3mono 10409 seq3split 10410 iseqf1olemjpcl 10426 iseqf1olemqpcl 10427 seq3f1olemqsumk 10430 seq3f1olemp 10433 seq3f1oleml 10434 seq3f1o 10435 seq3id 10439 seq3z 10442 fser0const 10447 leexp2a 10504 expnlbnd2 10576 hashfz 10730 hashfzo 10731 hashfzp1 10733 seq3coll 10751 seq3shft 10776 rexuz3 10928 r19.2uz 10931 cau4 11054 caubnd2 11055 clim 11218 climshft2 11243 climaddc1 11266 climmulc2 11268 climsubc1 11269 climsubc2 11270 clim2ser 11274 clim2ser2 11275 iserex 11276 climlec2 11278 climub 11281 climcau 11284 climcaucn 11288 serf0 11289 sumrbdclem 11314 fsum3cvg 11315 summodclem2a 11318 zsumdc 11321 fsum3 11324 fisumss 11329 fsum3cvg2 11331 fsum3ser 11334 fsumcl2lem 11335 fsumadd 11343 fsumm1 11353 fzosump1 11354 fsum1p 11355 fsump1 11357 fsummulc2 11385 telfsumo 11403 fsumparts 11407 iserabs 11412 binomlem 11420 isumshft 11427 isumsplit 11428 isumrpcl 11431 divcnv 11434 trireciplem 11437 geosergap 11443 geolim2 11449 cvgratnnlemseq 11463 cvgratnnlemabsle 11464 cvgratnnlemsumlt 11465 cvgratnnlemrate 11467 cvgratz 11469 cvgratgt0 11470 mertenslemi1 11472 clim2divap 11477 prodrbdclem 11508 fproddccvg 11509 prodmodclem3 11512 prodmodclem2a 11513 zproddc 11516 fprodntrivap 11521 fprodssdc 11527 fprodm1 11535 fprod1p 11536 fprodp1 11537 fprodabs 11553 fprodeq0 11554 efgt1p2 11632 modm1div 11736 zsupcllemstep 11874 infssuzex 11878 suprzubdc 11881 dvdsbnd 11885 uzwodc 11966 ncoprmgcdne1b 12017 isprm3 12046 prmind2 12048 nprm 12051 dvdsprm 12065 exprmfct 12066 isprm5lem 12069 isprm5 12070 phibndlem 12144 phibnd 12145 dfphi2 12148 hashdvds 12149 pclemdc 12216 pcaddlem 12266 pcmptdvds 12271 pcfac 12276 expnprm 12279 relogbval 13469 relogbzcl 13470 nnlogbexp 13477 logblt 13480 logbgcd1irr 13485 lgsne0 13539 2sqlem6 13556 2sqlem8a 13558 2sqlem8 13559 supfz 13907 |
Copyright terms: Public domain | W3C validator |