| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgss | GIF version | ||
| Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| subgss | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | issubg 13676 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp2bi 1018 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 ↾s cress 12999 Grpcgrp 13499 SubGrpcsubg 13670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-ov 5977 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-subg 13673 |
| This theorem is referenced by: subgbas 13681 subg0 13683 subginv 13684 subgsubcl 13688 subgsub 13689 subgmulgcl 13690 subgmulg 13691 issubg2m 13692 issubg4m 13696 subsubg 13700 subgintm 13701 trivsubgd 13703 nsgconj 13709 ssnmz 13714 eqger 13727 eqgid 13729 eqgen 13730 eqgcpbl 13731 resghm 13763 ghmnsgima 13771 conjsubg 13780 conjsubgen 13781 conjnmz 13782 conjnmzb 13783 qusecsub 13834 subgabl 13835 issubrng2 14139 issubrg2 14170 issubrg3 14176 islss4 14311 dflidl2rng 14410 |
| Copyright terms: Public domain | W3C validator |