![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > srgmgp | GIF version |
Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
Ref | Expression |
---|---|
srgmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
srgmgp | ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | srgmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | eqid 2193 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2193 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | eqid 2193 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | issrg 13461 | . 2 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))))) |
7 | 6 | simp2bi 1015 | 1 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 0gc0g 12867 Mndcmnd 12997 CMndccmn 13354 mulGrpcmgp 13416 SRingcsrg 13459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-0g 12869 df-srg 13460 |
This theorem is referenced by: srgcl 13466 srgass 13467 srgideu 13468 srgidcl 13472 srgidmlem 13474 srg1zr 13483 srgpcomp 13486 srgpcompp 13487 srgpcomppsc 13488 srg1expzeq1 13491 |
Copyright terms: Public domain | W3C validator |