ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgmgp GIF version

Theorem srgmgp 13600
Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypothesis
Ref Expression
srgmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
srgmgp (𝑅 ∈ SRing → 𝐺 ∈ Mnd)

Proof of Theorem srgmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 srgmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
3 eqid 2196 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2196 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2196 . . 3 (0g𝑅) = (0g𝑅)
61, 2, 3, 4, 5issrg 13597 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
76simp2bi 1015 1 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  0gc0g 12958  Mndcmnd 13118  CMndccmn 13490  mulGrpcmgp 13552  SRingcsrg 13595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-0g 12960  df-srg 13596
This theorem is referenced by:  srgcl  13602  srgass  13603  srgideu  13604  srgidcl  13608  srgidmlem  13610  srg1zr  13619  srgpcomp  13622  srgpcompp  13623  srgpcomppsc  13624  srg1expzeq1  13627
  Copyright terms: Public domain W3C validator