ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgmgp GIF version

Theorem srgmgp 13917
Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypothesis
Ref Expression
srgmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
srgmgp (𝑅 ∈ SRing → 𝐺 ∈ Mnd)

Proof of Theorem srgmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 srgmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
3 eqid 2229 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2229 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2229 . . 3 (0g𝑅) = (0g𝑅)
61, 2, 3, 4, 5issrg 13914 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
76simp2bi 1037 1 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  .rcmulr 13097  0gc0g 13275  Mndcmnd 13435  CMndccmn 13807  mulGrpcmgp 13869  SRingcsrg 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-0g 13277  df-srg 13913
This theorem is referenced by:  srgcl  13919  srgass  13920  srgideu  13921  srgidcl  13925  srgidmlem  13927  srg1zr  13936  srgpcomp  13939  srgpcompp  13940  srgpcomppsc  13941  srg1expzeq1  13944
  Copyright terms: Public domain W3C validator