| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp2 1022 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp2bi 1037 erinxp 6764 resixp 6888 exmidapne 7454 addcanprleml 7809 addcanprlemu 7810 ltmprr 7837 lelttrdi 8581 ixxdisj 10107 ixxss1 10108 ixxss2 10109 ixxss12 10110 iccgelb 10136 iccss2 10148 icodisj 10196 ioom 10488 elicore 10494 flqdiv 10551 mulqaddmodid 10594 modsumfzodifsn 10626 addmodlteq 10628 immul 11398 sumtp 11933 crth 12754 phimullem 12755 eulerthlem1 12757 eulerthlema 12760 eulerthlemh 12761 eulerthlemth 12762 ctiunct 13019 structn0fun 13053 strleund 13144 strext 13146 mhmlin 13508 subm0cl 13519 eqger 13769 eqgcpbl 13773 lmodvsdi 14283 lss0cl 14341 rnglidlmsgrp 14469 2idlcpblrng 14495 lmcl 14927 lmtopcnp 14932 xmeter 15118 tgqioo 15237 ivthinclemlopn 15318 ivthinclemuopn 15320 limcimolemlt 15346 limcresi 15348 limccnpcntop 15357 limccnp2lem 15358 limccnp2cntop 15359 cosordlem 15531 perfectlem2 15682 wlkp 16055 wlkpg 16056 wlkvtxiedg 16066 wlk1walkdom 16080 upgr2wlkdc 16096 |
| Copyright terms: Public domain | W3C validator |