| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp2 1003 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simp2bi 1018 erinxp 6726 resixp 6850 exmidapne 7414 addcanprleml 7769 addcanprlemu 7770 ltmprr 7797 lelttrdi 8541 ixxdisj 10067 ixxss1 10068 ixxss2 10069 ixxss12 10070 iccgelb 10096 iccss2 10108 icodisj 10156 ioom 10447 elicore 10453 flqdiv 10510 mulqaddmodid 10553 modsumfzodifsn 10585 addmodlteq 10587 immul 11356 sumtp 11891 crth 12712 phimullem 12713 eulerthlem1 12715 eulerthlema 12718 eulerthlemh 12719 eulerthlemth 12720 ctiunct 12977 structn0fun 13011 strleund 13102 strext 13104 mhmlin 13466 subm0cl 13477 eqger 13727 eqgcpbl 13731 lmodvsdi 14240 lss0cl 14298 rnglidlmsgrp 14426 2idlcpblrng 14452 lmcl 14884 lmtopcnp 14889 xmeter 15075 tgqioo 15194 ivthinclemlopn 15275 ivthinclemuopn 15277 limcimolemlt 15303 limcresi 15305 limccnpcntop 15314 limccnp2lem 15315 limccnp2cntop 15316 cosordlem 15488 perfectlem2 15639 |
| Copyright terms: Public domain | W3C validator |