| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp2bi 1015 erinxp 6677 resixp 6801 exmidapne 7343 addcanprleml 7698 addcanprlemu 7699 ltmprr 7726 lelttrdi 8470 ixxdisj 9995 ixxss1 9996 ixxss2 9997 ixxss12 9998 iccgelb 10024 iccss2 10036 icodisj 10084 ioom 10367 elicore 10373 flqdiv 10430 mulqaddmodid 10473 modsumfzodifsn 10505 addmodlteq 10507 immul 11061 sumtp 11596 crth 12417 phimullem 12418 eulerthlem1 12420 eulerthlema 12423 eulerthlemh 12424 eulerthlemth 12425 ctiunct 12682 structn0fun 12716 strleund 12806 strext 12808 mhmlin 13169 subm0cl 13180 eqger 13430 eqgcpbl 13434 lmodvsdi 13943 lss0cl 14001 rnglidlmsgrp 14129 2idlcpblrng 14155 lmcl 14565 lmtopcnp 14570 xmeter 14756 tgqioo 14875 ivthinclemlopn 14956 ivthinclemuopn 14958 limcimolemlt 14984 limcresi 14986 limccnpcntop 14995 limccnp2lem 14996 limccnp2cntop 14997 cosordlem 15169 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |