Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp2d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp2 998 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simp2bi 1013 erinxp 6599 resixp 6723 addcanprleml 7588 addcanprlemu 7589 ltmprr 7616 lelttrdi 8357 ixxdisj 9872 ixxss1 9873 ixxss2 9874 ixxss12 9875 iccgelb 9901 iccss2 9913 icodisj 9961 ioom 10229 elicore 10235 flqdiv 10289 mulqaddmodid 10332 modsumfzodifsn 10364 addmodlteq 10366 immul 10854 sumtp 11388 crth 12189 phimullem 12190 eulerthlem1 12192 eulerthlema 12195 eulerthlemh 12196 eulerthlemth 12197 ctiunct 12406 structn0fun 12440 strleund 12517 mhmlin 12719 subm0cl 12729 lmcl 13296 lmtopcnp 13301 xmeter 13487 tgqioo 13598 ivthinclemlopn 13665 ivthinclemuopn 13667 limcimolemlt 13684 limcresi 13686 limccnpcntop 13695 limccnp2lem 13696 limccnp2cntop 13697 cosordlem 13821 |
Copyright terms: Public domain | W3C validator |