ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2d GIF version

Theorem simp2d 1034
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
3simp1d.1 (𝜑 → (𝜓𝜒𝜃))
Assertion
Ref Expression
simp2d (𝜑𝜒)

Proof of Theorem simp2d
StepHypRef Expression
1 3simp1d.1 . 2 (𝜑 → (𝜓𝜒𝜃))
2 simp2 1022 . 2 ((𝜓𝜒𝜃) → 𝜒)
31, 2syl 14 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  simp2bi  1037  erinxp  6764  resixp  6888  exmidapne  7454  addcanprleml  7809  addcanprlemu  7810  ltmprr  7837  lelttrdi  8581  ixxdisj  10107  ixxss1  10108  ixxss2  10109  ixxss12  10110  iccgelb  10136  iccss2  10148  icodisj  10196  ioom  10488  elicore  10494  flqdiv  10551  mulqaddmodid  10594  modsumfzodifsn  10626  addmodlteq  10628  immul  11398  sumtp  11933  crth  12754  phimullem  12755  eulerthlem1  12757  eulerthlema  12760  eulerthlemh  12761  eulerthlemth  12762  ctiunct  13019  structn0fun  13053  strleund  13144  strext  13146  mhmlin  13508  subm0cl  13519  eqger  13769  eqgcpbl  13773  lmodvsdi  14283  lss0cl  14341  rnglidlmsgrp  14469  2idlcpblrng  14495  lmcl  14927  lmtopcnp  14932  xmeter  15118  tgqioo  15237  ivthinclemlopn  15318  ivthinclemuopn  15320  limcimolemlt  15346  limcresi  15348  limccnpcntop  15357  limccnp2lem  15358  limccnp2cntop  15359  cosordlem  15531  perfectlem2  15682  wlkp  16055  wlkpg  16056  wlkvtxiedg  16066  wlk1walkdom  16080  upgr2wlkdc  16096
  Copyright terms: Public domain W3C validator