Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp2d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp2 993 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simp2bi 1008 erinxp 6587 resixp 6711 addcanprleml 7576 addcanprlemu 7577 ltmprr 7604 lelttrdi 8345 ixxdisj 9860 ixxss1 9861 ixxss2 9862 ixxss12 9863 iccgelb 9889 iccss2 9901 icodisj 9949 ioom 10217 elicore 10223 flqdiv 10277 mulqaddmodid 10320 modsumfzodifsn 10352 addmodlteq 10354 immul 10843 sumtp 11377 crth 12178 phimullem 12179 eulerthlem1 12181 eulerthlema 12184 eulerthlemh 12185 eulerthlemth 12186 ctiunct 12395 structn0fun 12429 strleund 12506 mhmlin 12690 subm0cl 12700 lmcl 13039 lmtopcnp 13044 xmeter 13230 tgqioo 13341 ivthinclemlopn 13408 ivthinclemuopn 13410 limcimolemlt 13427 limcresi 13429 limccnpcntop 13438 limccnp2lem 13439 limccnp2cntop 13440 cosordlem 13564 |
Copyright terms: Public domain | W3C validator |