Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp2d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp2 988 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simp2bi 1003 erinxp 6575 resixp 6699 addcanprleml 7555 addcanprlemu 7556 ltmprr 7583 lelttrdi 8324 ixxdisj 9839 ixxss1 9840 ixxss2 9841 ixxss12 9842 iccgelb 9868 iccss2 9880 icodisj 9928 ioom 10196 elicore 10202 flqdiv 10256 mulqaddmodid 10299 modsumfzodifsn 10331 addmodlteq 10333 immul 10821 sumtp 11355 crth 12156 phimullem 12157 eulerthlem1 12159 eulerthlema 12162 eulerthlemh 12163 eulerthlemth 12164 ctiunct 12373 structn0fun 12407 strleund 12483 lmcl 12885 lmtopcnp 12890 xmeter 13076 tgqioo 13187 ivthinclemlopn 13254 ivthinclemuopn 13256 limcimolemlt 13273 limcresi 13275 limccnpcntop 13284 limccnp2lem 13285 limccnp2cntop 13286 cosordlem 13410 |
Copyright terms: Public domain | W3C validator |