| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp2 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp2bi 1016 erinxp 6703 resixp 6827 exmidapne 7379 addcanprleml 7734 addcanprlemu 7735 ltmprr 7762 lelttrdi 8506 ixxdisj 10032 ixxss1 10033 ixxss2 10034 ixxss12 10035 iccgelb 10061 iccss2 10073 icodisj 10121 ioom 10410 elicore 10416 flqdiv 10473 mulqaddmodid 10516 modsumfzodifsn 10548 addmodlteq 10550 immul 11234 sumtp 11769 crth 12590 phimullem 12591 eulerthlem1 12593 eulerthlema 12596 eulerthlemh 12597 eulerthlemth 12598 ctiunct 12855 structn0fun 12889 strleund 12979 strext 12981 mhmlin 13343 subm0cl 13354 eqger 13604 eqgcpbl 13608 lmodvsdi 14117 lss0cl 14175 rnglidlmsgrp 14303 2idlcpblrng 14329 lmcl 14761 lmtopcnp 14766 xmeter 14952 tgqioo 15071 ivthinclemlopn 15152 ivthinclemuopn 15154 limcimolemlt 15180 limcresi 15182 limccnpcntop 15191 limccnp2lem 15192 limccnp2cntop 15193 cosordlem 15365 perfectlem2 15516 |
| Copyright terms: Public domain | W3C validator |