![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp2d | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp2d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | simp2 963 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 943 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 945 |
This theorem is referenced by: simp2bi 978 erinxp 6455 resixp 6579 addcanprleml 7364 addcanprlemu 7365 ltmprr 7392 lelttrdi 8101 ixxdisj 9573 ixxss1 9574 ixxss2 9575 ixxss12 9576 iccgelb 9602 iccss2 9614 icodisj 9662 ioom 9925 flqdiv 9981 mulqaddmodid 10024 modsumfzodifsn 10056 addmodlteq 10058 immul 10538 sumtp 11069 crth 11739 phimullem 11740 ctiunct 11790 structn0fun 11809 strleund 11884 lmcl 12250 lmtopcnp 12255 xmeter 12419 tgqioo 12527 limcimolemlt 12583 limcresi 12585 limccnpcntop 12594 limccnp2lem 12595 limccnp2cntop 12596 |
Copyright terms: Public domain | W3C validator |