| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp2d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp2bi 1015 erinxp 6677 resixp 6801 exmidapne 7345 addcanprleml 7700 addcanprlemu 7701 ltmprr 7728 lelttrdi 8472 ixxdisj 9997 ixxss1 9998 ixxss2 9999 ixxss12 10000 iccgelb 10026 iccss2 10038 icodisj 10086 ioom 10369 elicore 10375 flqdiv 10432 mulqaddmodid 10475 modsumfzodifsn 10507 addmodlteq 10509 immul 11063 sumtp 11598 crth 12419 phimullem 12420 eulerthlem1 12422 eulerthlema 12425 eulerthlemh 12426 eulerthlemth 12427 ctiunct 12684 structn0fun 12718 strleund 12808 strext 12810 mhmlin 13171 subm0cl 13182 eqger 13432 eqgcpbl 13436 lmodvsdi 13945 lss0cl 14003 rnglidlmsgrp 14131 2idlcpblrng 14157 lmcl 14567 lmtopcnp 14572 xmeter 14758 tgqioo 14877 ivthinclemlopn 14958 ivthinclemuopn 14960 limcimolemlt 14986 limcresi 14988 limccnpcntop 14997 limccnp2lem 14998 limccnp2cntop 14999 cosordlem 15171 perfectlem2 15322 |
| Copyright terms: Public domain | W3C validator |