ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlol GIF version

Theorem caucvgprprlemlol 7530
Description: Lemma for caucvgprpr 7544. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemlol ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙   𝑢,𝐹,𝑟   𝑝,𝑙,𝑠   𝑞,𝑙,𝑠,𝑟   𝑡,𝑙,𝑝   𝑢,𝑞,𝑠,𝑟   𝑢,𝑝,𝑡,𝑟   𝜑,𝑟   𝑟,𝑞,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemlol
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7197 . . . . 5 <Q ⊆ (Q × Q)
21brel 4599 . . . 4 (𝑠 <Q 𝑡 → (𝑠Q𝑡Q))
32simpld 111 . . 3 (𝑠 <Q 𝑡𝑠Q)
433ad2ant2 1004 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠Q)
5 caucvgprpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
65caucvgprprlemell 7517 . . . . . 6 (𝑡 ∈ (1st𝐿) ↔ (𝑡Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
76simprbi 273 . . . . 5 (𝑡 ∈ (1st𝐿) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
873ad2ant3 1005 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
9 simpll2 1022 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠 <Q 𝑡)
10 ltanqg 7232 . . . . . . . . . . 11 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
1110adantl 275 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q𝑧Q)) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
124ad2antrr 480 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠Q)
132simprd 113 . . . . . . . . . . . 12 (𝑠 <Q 𝑡𝑡Q)
14133ad2ant2 1004 . . . . . . . . . . 11 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑡Q)
1514ad2antrr 480 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑡Q)
16 simplr 520 . . . . . . . . . . 11 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑏N)
17 nnnq 7254 . . . . . . . . . . 11 (𝑏N → [⟨𝑏, 1o⟩] ~QQ)
18 recclnq 7224 . . . . . . . . . . 11 ([⟨𝑏, 1o⟩] ~QQ → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
20 addcomnqg 7213 . . . . . . . . . . 11 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2120adantl 275 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q)) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2211, 12, 15, 19, 21caovord2d 5948 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 <Q 𝑡 ↔ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))))
239, 22mpbid 146 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
24 ltnqpri 7426 . . . . . . . 8 ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
2523, 24syl 14 . . . . . . 7 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
26 ltsopr 7428 . . . . . . . 8 <P Or P
27 ltrelpr 7337 . . . . . . . 8 <P ⊆ (P × P)
2826, 27sotri 4942 . . . . . . 7 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
2925, 28sylancom 417 . . . . . 6 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
3029ex 114 . . . . 5 (((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) → (⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
3130reximdva 2537 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → (∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
328, 31mpd 13 . . 3 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
33 opeq1 3713 . . . . . . . . . . 11 (𝑏 = 𝑟 → ⟨𝑏, 1o⟩ = ⟨𝑟, 1o⟩)
3433eceq1d 6473 . . . . . . . . . 10 (𝑏 = 𝑟 → [⟨𝑏, 1o⟩] ~Q = [⟨𝑟, 1o⟩] ~Q )
3534fveq2d 5433 . . . . . . . . 9 (𝑏 = 𝑟 → (*Q‘[⟨𝑏, 1o⟩] ~Q ) = (*Q‘[⟨𝑟, 1o⟩] ~Q ))
3635oveq2d 5798 . . . . . . . 8 (𝑏 = 𝑟 → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
3736breq2d 3949 . . . . . . 7 (𝑏 = 𝑟 → (𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))))
3837abbidv 2258 . . . . . 6 (𝑏 = 𝑟 → {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))})
3936breq1d 3947 . . . . . . 7 (𝑏 = 𝑟 → ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞))
4039abbidv 2258 . . . . . 6 (𝑏 = 𝑟 → {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞})
4138, 40opeq12d 3721 . . . . 5 (𝑏 = 𝑟 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩)
42 fveq2 5429 . . . . 5 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
4341, 42breq12d 3950 . . . 4 (𝑏 = 𝑟 → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
4443cbvrexv 2658 . . 3 (∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
4532, 44sylib 121 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
465caucvgprprlemell 7517 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
474, 45, 46sylanbrc 414 1 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cop 3535   class class class wbr 3937  wf 5127  cfv 5131  (class class class)co 5782  1st c1st 6044  1oc1o 6314  [cec 6435  Ncnpi 7104   <N clti 7107   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114  *Qcrq 7116   <Q cltq 7117  Pcnp 7123   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-iltp 7302
This theorem is referenced by:  caucvgprprlemrnd  7533
  Copyright terms: Public domain W3C validator