ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlol GIF version

Theorem caucvgprprlemlol 7160
Description: Lemma for caucvgprpr 7174. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemlol ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙   𝑢,𝐹,𝑟   𝑝,𝑙,𝑠   𝑞,𝑙,𝑠,𝑟   𝑡,𝑙,𝑝   𝑢,𝑞,𝑠,𝑟   𝑢,𝑝,𝑡,𝑟   𝜑,𝑟   𝑟,𝑞,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemlol
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6827 . . . . 5 <Q ⊆ (Q × Q)
21brel 4448 . . . 4 (𝑠 <Q 𝑡 → (𝑠Q𝑡Q))
32simpld 110 . . 3 (𝑠 <Q 𝑡𝑠Q)
433ad2ant2 961 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠Q)
5 caucvgprpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
65caucvgprprlemell 7147 . . . . . 6 (𝑡 ∈ (1st𝐿) ↔ (𝑡Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
76simprbi 269 . . . . 5 (𝑡 ∈ (1st𝐿) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
873ad2ant3 962 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
9 simpll2 979 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠 <Q 𝑡)
10 ltanqg 6862 . . . . . . . . . . 11 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
1110adantl 271 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q𝑧Q)) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
124ad2antrr 472 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠Q)
132simprd 112 . . . . . . . . . . . 12 (𝑠 <Q 𝑡𝑡Q)
14133ad2ant2 961 . . . . . . . . . . 11 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑡Q)
1514ad2antrr 472 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑡Q)
16 simplr 497 . . . . . . . . . . 11 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑏N)
17 nnnq 6884 . . . . . . . . . . 11 (𝑏N → [⟨𝑏, 1𝑜⟩] ~QQ)
18 recclnq 6854 . . . . . . . . . . 11 ([⟨𝑏, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
20 addcomnqg 6843 . . . . . . . . . . 11 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2120adantl 271 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q)) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2211, 12, 15, 19, 21caovord2d 5749 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 <Q 𝑡 ↔ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))))
239, 22mpbid 145 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
24 ltnqpri 7056 . . . . . . . 8 ((𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
2523, 24syl 14 . . . . . . 7 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
26 ltsopr 7058 . . . . . . . 8 <P Or P
27 ltrelpr 6967 . . . . . . . 8 <P ⊆ (P × P)
2826, 27sotri 4782 . . . . . . 7 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
2925, 28sylancom 411 . . . . . 6 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
3029ex 113 . . . . 5 (((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) → (⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
3130reximdva 2469 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → (∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
328, 31mpd 13 . . 3 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
33 opeq1 3596 . . . . . . . . . . 11 (𝑏 = 𝑟 → ⟨𝑏, 1𝑜⟩ = ⟨𝑟, 1𝑜⟩)
3433eceq1d 6258 . . . . . . . . . 10 (𝑏 = 𝑟 → [⟨𝑏, 1𝑜⟩] ~Q = [⟨𝑟, 1𝑜⟩] ~Q )
3534fveq2d 5257 . . . . . . . . 9 (𝑏 = 𝑟 → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))
3635oveq2d 5607 . . . . . . . 8 (𝑏 = 𝑟 → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )))
3736breq2d 3823 . . . . . . 7 (𝑏 = 𝑟 → (𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))))
3837abbidv 2200 . . . . . 6 (𝑏 = 𝑟 → {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))})
3936breq1d 3821 . . . . . . 7 (𝑏 = 𝑟 → ((𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞))
4039abbidv 2200 . . . . . 6 (𝑏 = 𝑟 → {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞})
4138, 40opeq12d 3604 . . . . 5 (𝑏 = 𝑟 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
42 fveq2 5253 . . . . 5 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
4341, 42breq12d 3824 . . . 4 (𝑏 = 𝑟 → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
4443cbvrexv 2584 . . 3 (∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
4532, 44sylib 120 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
465caucvgprprlemell 7147 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
474, 45, 46sylanbrc 408 1 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  {cab 2069  wral 2353  wrex 2354  {crab 2357  cop 3425   class class class wbr 3811  wf 4965  cfv 4969  (class class class)co 5591  1st c1st 5844  1𝑜c1o 6106  [cec 6220  Ncnpi 6734   <N clti 6737   ~Q ceq 6741  Qcnq 6742   +Q cplq 6744  *Qcrq 6746   <Q cltq 6747  Pcnp 6753   +P cpp 6755  <P cltp 6757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-inp 6928  df-iltp 6932
This theorem is referenced by:  caucvgprprlemrnd  7163
  Copyright terms: Public domain W3C validator