ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlol GIF version

Theorem caucvgprprlemlol 7793
Description: Lemma for caucvgprpr 7807. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemlol ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙   𝑢,𝐹,𝑟   𝑝,𝑙,𝑠   𝑞,𝑙,𝑠,𝑟   𝑡,𝑙,𝑝   𝑢,𝑞,𝑠,𝑟   𝑢,𝑝,𝑡,𝑟   𝜑,𝑟   𝑟,𝑞,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemlol
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7460 . . . . 5 <Q ⊆ (Q × Q)
21brel 4725 . . . 4 (𝑠 <Q 𝑡 → (𝑠Q𝑡Q))
32simpld 112 . . 3 (𝑠 <Q 𝑡𝑠Q)
433ad2ant2 1021 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠Q)
5 caucvgprpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
65caucvgprprlemell 7780 . . . . . 6 (𝑡 ∈ (1st𝐿) ↔ (𝑡Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
76simprbi 275 . . . . 5 (𝑡 ∈ (1st𝐿) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
873ad2ant3 1022 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
9 simpll2 1039 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠 <Q 𝑡)
10 ltanqg 7495 . . . . . . . . . . 11 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
1110adantl 277 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q𝑧Q)) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
124ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑠Q)
132simprd 114 . . . . . . . . . . . 12 (𝑠 <Q 𝑡𝑡Q)
14133ad2ant2 1021 . . . . . . . . . . 11 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑡Q)
1514ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑡Q)
16 simplr 528 . . . . . . . . . . 11 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → 𝑏N)
17 nnnq 7517 . . . . . . . . . . 11 (𝑏N → [⟨𝑏, 1o⟩] ~QQ)
18 recclnq 7487 . . . . . . . . . . 11 ([⟨𝑏, 1o⟩] ~QQ → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . 10 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (*Q‘[⟨𝑏, 1o⟩] ~Q ) ∈ Q)
20 addcomnqg 7476 . . . . . . . . . . 11 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2120adantl 277 . . . . . . . . . 10 (((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) ∧ (𝑥Q𝑦Q)) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
2211, 12, 15, 19, 21caovord2d 6106 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 <Q 𝑡 ↔ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))))
239, 22mpbid 147 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
24 ltnqpri 7689 . . . . . . . 8 ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
2523, 24syl 14 . . . . . . 7 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
26 ltsopr 7691 . . . . . . . 8 <P Or P
27 ltrelpr 7600 . . . . . . . 8 <P ⊆ (P × P)
2826, 27sotri 5075 . . . . . . 7 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
2925, 28sylancom 420 . . . . . 6 ((((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
3029ex 115 . . . . 5 (((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) ∧ 𝑏N) → (⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
3130reximdva 2607 . . . 4 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → (∃𝑏N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
328, 31mpd 13 . . 3 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
33 opeq1 3818 . . . . . . . . . . 11 (𝑏 = 𝑟 → ⟨𝑏, 1o⟩ = ⟨𝑟, 1o⟩)
3433eceq1d 6646 . . . . . . . . . 10 (𝑏 = 𝑟 → [⟨𝑏, 1o⟩] ~Q = [⟨𝑟, 1o⟩] ~Q )
3534fveq2d 5574 . . . . . . . . 9 (𝑏 = 𝑟 → (*Q‘[⟨𝑏, 1o⟩] ~Q ) = (*Q‘[⟨𝑟, 1o⟩] ~Q ))
3635oveq2d 5950 . . . . . . . 8 (𝑏 = 𝑟 → (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
3736breq2d 4055 . . . . . . 7 (𝑏 = 𝑟 → (𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))))
3837abbidv 2322 . . . . . 6 (𝑏 = 𝑟 → {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))})
3936breq1d 4053 . . . . . . 7 (𝑏 = 𝑟 → ((𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞))
4039abbidv 2322 . . . . . 6 (𝑏 = 𝑟 → {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞})
4138, 40opeq12d 3826 . . . . 5 (𝑏 = 𝑟 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩)
42 fveq2 5570 . . . . 5 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
4341, 42breq12d 4056 . . . 4 (𝑏 = 𝑟 → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
4443cbvrexv 2738 . . 3 (∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
4532, 44sylib 122 . 2 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
465caucvgprprlemell 7780 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
474, 45, 46sylanbrc 417 1 ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  {cab 2190  wral 2483  wrex 2484  {crab 2487  cop 3635   class class class wbr 4043  wf 5264  cfv 5268  (class class class)co 5934  1st c1st 6214  1oc1o 6485  [cec 6608  Ncnpi 7367   <N clti 7370   ~Q ceq 7374  Qcnq 7375   +Q cplq 7377  *Qcrq 7379   <Q cltq 7380  Pcnp 7386   +P cpp 7388  <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-inp 7561  df-iltp 7565
This theorem is referenced by:  caucvgprprlemrnd  7796
  Copyright terms: Public domain W3C validator