ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidceq GIF version

Theorem fidceq 7039
Description: Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that {𝐵, 𝐶} is finite would require showing it is equinumerous to 1o or to 2o but to show that you'd need to know 𝐵 = 𝐶 or ¬ 𝐵 = 𝐶, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
fidceq ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)

Proof of Theorem fidceq
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6920 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
323ad2ant1 1042 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → ∃𝑥 ∈ ω 𝐴𝑥)
4 bren 6903 . . . . 5 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
54biimpi 120 . . . 4 (𝐴𝑥 → ∃𝑓 𝑓:𝐴1-1-onto𝑥)
65ad2antll 491 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → ∃𝑓 𝑓:𝐴1-1-onto𝑥)
7 f1of 5574 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴𝑥)
87adantl 277 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑓:𝐴𝑥)
9 simpll2 1061 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝐵𝐴)
108, 9ffvelcdmd 5773 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐵) ∈ 𝑥)
11 simplrl 535 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑥 ∈ ω)
12 elnn 4698 . . . . . . . 8 (((𝑓𝐵) ∈ 𝑥𝑥 ∈ ω) → (𝑓𝐵) ∈ ω)
1310, 11, 12syl2anc 411 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐵) ∈ ω)
14 simpll3 1062 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝐶𝐴)
158, 14ffvelcdmd 5773 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐶) ∈ 𝑥)
16 elnn 4698 . . . . . . . 8 (((𝑓𝐶) ∈ 𝑥𝑥 ∈ ω) → (𝑓𝐶) ∈ ω)
1715, 11, 16syl2anc 411 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐶) ∈ ω)
18 nndceq 6653 . . . . . . 7 (((𝑓𝐵) ∈ ω ∧ (𝑓𝐶) ∈ ω) → DECID (𝑓𝐵) = (𝑓𝐶))
1913, 17, 18syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → DECID (𝑓𝐵) = (𝑓𝐶))
20 exmiddc 841 . . . . . 6 (DECID (𝑓𝐵) = (𝑓𝐶) → ((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)))
2119, 20syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → ((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)))
22 f1of1 5573 . . . . . . . 8 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
2322adantl 277 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑓:𝐴1-1𝑥)
24 f1veqaeq 5899 . . . . . . 7 ((𝑓:𝐴1-1𝑥 ∧ (𝐵𝐴𝐶𝐴)) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
2523, 9, 14, 24syl12anc 1269 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
26 fveq2 5629 . . . . . . . 8 (𝐵 = 𝐶 → (𝑓𝐵) = (𝑓𝐶))
2726con3i 635 . . . . . . 7 (¬ (𝑓𝐵) = (𝑓𝐶) → ¬ 𝐵 = 𝐶)
2827a1i 9 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (¬ (𝑓𝐵) = (𝑓𝐶) → ¬ 𝐵 = 𝐶))
2925, 28orim12d 791 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)) → (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶)))
3021, 29mpd 13 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶))
31 df-dc 840 . . . 4 (DECID 𝐵 = 𝐶 ↔ (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶))
3230, 31sylibr 134 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → DECID 𝐵 = 𝐶)
336, 32exlimddv 1945 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → DECID 𝐵 = 𝐶)
343, 33rexlimddv 2653 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wrex 2509   class class class wbr 4083  ωcom 4682  wf 5314  1-1wf1 5315  1-1-ontowf1o 5317  cfv 5318  cen 6893  Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-en 6896  df-fin 6898
This theorem is referenced by:  fidifsnen  7040  fidifsnid  7041  pw1fin  7080  unfiexmid  7088  undiffi  7095  fidcenumlemim  7127
  Copyright terms: Public domain W3C validator