ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidceq GIF version

Theorem fidceq 6927
Description: Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that {𝐵, 𝐶} is finite would require showing it is equinumerous to 1o or to 2o but to show that you'd need to know 𝐵 = 𝐶 or ¬ 𝐵 = 𝐶, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
fidceq ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)

Proof of Theorem fidceq
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6817 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
323ad2ant1 1020 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → ∃𝑥 ∈ ω 𝐴𝑥)
4 bren 6803 . . . . 5 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
54biimpi 120 . . . 4 (𝐴𝑥 → ∃𝑓 𝑓:𝐴1-1-onto𝑥)
65ad2antll 491 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → ∃𝑓 𝑓:𝐴1-1-onto𝑥)
7 f1of 5501 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴𝑥)
87adantl 277 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑓:𝐴𝑥)
9 simpll2 1039 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝐵𝐴)
108, 9ffvelcdmd 5695 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐵) ∈ 𝑥)
11 simplrl 535 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑥 ∈ ω)
12 elnn 4639 . . . . . . . 8 (((𝑓𝐵) ∈ 𝑥𝑥 ∈ ω) → (𝑓𝐵) ∈ ω)
1310, 11, 12syl2anc 411 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐵) ∈ ω)
14 simpll3 1040 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝐶𝐴)
158, 14ffvelcdmd 5695 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐶) ∈ 𝑥)
16 elnn 4639 . . . . . . . 8 (((𝑓𝐶) ∈ 𝑥𝑥 ∈ ω) → (𝑓𝐶) ∈ ω)
1715, 11, 16syl2anc 411 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐶) ∈ ω)
18 nndceq 6554 . . . . . . 7 (((𝑓𝐵) ∈ ω ∧ (𝑓𝐶) ∈ ω) → DECID (𝑓𝐵) = (𝑓𝐶))
1913, 17, 18syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → DECID (𝑓𝐵) = (𝑓𝐶))
20 exmiddc 837 . . . . . 6 (DECID (𝑓𝐵) = (𝑓𝐶) → ((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)))
2119, 20syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → ((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)))
22 f1of1 5500 . . . . . . . 8 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
2322adantl 277 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑓:𝐴1-1𝑥)
24 f1veqaeq 5813 . . . . . . 7 ((𝑓:𝐴1-1𝑥 ∧ (𝐵𝐴𝐶𝐴)) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
2523, 9, 14, 24syl12anc 1247 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
26 fveq2 5555 . . . . . . . 8 (𝐵 = 𝐶 → (𝑓𝐵) = (𝑓𝐶))
2726con3i 633 . . . . . . 7 (¬ (𝑓𝐵) = (𝑓𝐶) → ¬ 𝐵 = 𝐶)
2827a1i 9 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (¬ (𝑓𝐵) = (𝑓𝐶) → ¬ 𝐵 = 𝐶))
2925, 28orim12d 787 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)) → (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶)))
3021, 29mpd 13 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶))
31 df-dc 836 . . . 4 (DECID 𝐵 = 𝐶 ↔ (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶))
3230, 31sylibr 134 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → DECID 𝐵 = 𝐶)
336, 32exlimddv 1910 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → DECID 𝐵 = 𝐶)
343, 33rexlimddv 2616 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wrex 2473   class class class wbr 4030  ωcom 4623  wf 5251  1-1wf1 5252  1-1-ontowf1o 5254  cfv 5255  cen 6794  Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-en 6797  df-fin 6799
This theorem is referenced by:  fidifsnen  6928  fidifsnid  6929  pw1fin  6968  unfiexmid  6976  undiffi  6983  fidcenumlemim  7013
  Copyright terms: Public domain W3C validator