ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlol GIF version

Theorem cauappcvgprlemlol 7579
Description: Lemma for cauappcvgpr 7594. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemlol ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemlol
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7297 . . . . 5 <Q ⊆ (Q × Q)
21brel 4650 . . . 4 (𝑠 <Q 𝑟 → (𝑠Q𝑟Q))
32simpld 111 . . 3 (𝑠 <Q 𝑟𝑠Q)
433ad2ant2 1008 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠Q)
5 oveq1 5843 . . . . . . . 8 (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞))
65breq1d 3986 . . . . . . 7 (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
76rexbidv 2465 . . . . . 6 (𝑙 = 𝑟 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
8 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
98fveq2i 5483 . . . . . . 7 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
10 nqex 7295 . . . . . . . . 9 Q ∈ V
1110rabex 4120 . . . . . . . 8 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
1210rabex 4120 . . . . . . . 8 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
1311, 12op1st 6106 . . . . . . 7 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
149, 13eqtri 2185 . . . . . 6 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
157, 14elrab2 2880 . . . . 5 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞)))
1615simprbi 273 . . . 4 (𝑟 ∈ (1st𝐿) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
17163ad2ant3 1009 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞))
18 simpll2 1026 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑠 <Q 𝑟)
19 ltanqg 7332 . . . . . . . . 9 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2019adantl 275 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
214ad2antrr 480 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑠Q)
222simprd 113 . . . . . . . . . 10 (𝑠 <Q 𝑟𝑟Q)
23223ad2ant2 1008 . . . . . . . . 9 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑟Q)
2423ad2antrr 480 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑟Q)
25 simplr 520 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → 𝑞Q)
26 addcomnqg 7313 . . . . . . . . 9 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
2726adantl 275 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
2820, 21, 24, 25, 27caovord2d 6002 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q 𝑞) <Q (𝑟 +Q 𝑞)))
2918, 28mpbid 146 . . . . . 6 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 +Q 𝑞) <Q (𝑟 +Q 𝑞))
30 ltsonq 7330 . . . . . . 7 <Q Or Q
3130, 1sotri 4993 . . . . . 6 (((𝑠 +Q 𝑞) <Q (𝑟 +Q 𝑞) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 +Q 𝑞) <Q (𝐹𝑞))
3229, 31sylancom 417 . . . . 5 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) ∧ (𝑟 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 +Q 𝑞) <Q (𝐹𝑞))
3332ex 114 . . . 4 (((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑞Q) → ((𝑟 +Q 𝑞) <Q (𝐹𝑞) → (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3433reximdva 2566 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → (∃𝑞Q (𝑟 +Q 𝑞) <Q (𝐹𝑞) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3517, 34mpd 13 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
36 oveq1 5843 . . . . 5 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
3736breq1d 3986 . . . 4 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3837rexbidv 2465 . . 3 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3938, 14elrab2 2880 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
404, 35, 39sylanbrc 414 1 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wral 2442  wrex 2443  {crab 2446  cop 3573   class class class wbr 3976  wf 5178  cfv 5182  (class class class)co 5836  1st c1st 6098  Qcnq 7212   +Q cplq 7214   <Q cltq 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-ltnqqs 7285
This theorem is referenced by:  cauappcvgprlemrnd  7582
  Copyright terms: Public domain W3C validator