Step | Hyp | Ref
| Expression |
1 | | ltrelnq 7306 |
. . . . 5
⊢
<Q ⊆ (Q ×
Q) |
2 | 1 | brel 4656 |
. . . 4
⊢ (𝑠 <Q
𝑟 → (𝑠 ∈ Q ∧
𝑟 ∈
Q)) |
3 | 2 | simpld 111 |
. . 3
⊢ (𝑠 <Q
𝑟 → 𝑠 ∈ Q) |
4 | 3 | 3ad2ant2 1009 |
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ Q) |
5 | | oveq1 5849 |
. . . . . . . 8
⊢ (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞)) |
6 | 5 | breq1d 3992 |
. . . . . . 7
⊢ (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞))) |
7 | 6 | rexbidv 2467 |
. . . . . 6
⊢ (𝑙 = 𝑟 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞))) |
8 | | cauappcvgpr.lim |
. . . . . . . 8
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 |
9 | 8 | fveq2i 5489 |
. . . . . . 7
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) |
10 | | nqex 7304 |
. . . . . . . . 9
⊢
Q ∈ V |
11 | 10 | rabex 4126 |
. . . . . . . 8
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
12 | 10 | rabex 4126 |
. . . . . . . 8
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} ∈
V |
13 | 11, 12 | op1st 6114 |
. . . . . . 7
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) = {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} |
14 | 9, 13 | eqtri 2186 |
. . . . . 6
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)} |
15 | 7, 14 | elrab2 2885 |
. . . . 5
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑞 ∈
Q (𝑟
+Q 𝑞) <Q (𝐹‘𝑞))) |
16 | 15 | simprbi 273 |
. . . 4
⊢ (𝑟 ∈ (1st
‘𝐿) →
∃𝑞 ∈
Q (𝑟
+Q 𝑞) <Q (𝐹‘𝑞)) |
17 | 16 | 3ad2ant3 1010 |
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑞 ∈ Q (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) |
18 | | simpll2 1027 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) → 𝑠 <Q 𝑟) |
19 | | ltanqg 7341 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
20 | 19 | adantl 275 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
21 | 4 | ad2antrr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) → 𝑠 ∈ Q) |
22 | 2 | simprd 113 |
. . . . . . . . . 10
⊢ (𝑠 <Q
𝑟 → 𝑟 ∈ Q) |
23 | 22 | 3ad2ant2 1009 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑟 ∈ Q) |
24 | 23 | ad2antrr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) → 𝑟 ∈ Q) |
25 | | simplr 520 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) → 𝑞 ∈ Q) |
26 | | addcomnqg 7322 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
27 | 26 | adantl 275 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
28 | 20, 21, 24, 25, 27 | caovord2d 6011 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q 𝑞) <Q
(𝑟
+Q 𝑞))) |
29 | 18, 28 | mpbid 146 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) → (𝑠 +Q 𝑞) <Q
(𝑟
+Q 𝑞)) |
30 | | ltsonq 7339 |
. . . . . . 7
⊢
<Q Or Q |
31 | 30, 1 | sotri 4999 |
. . . . . 6
⊢ (((𝑠 +Q
𝑞)
<Q (𝑟 +Q 𝑞) ∧ (𝑟 +Q 𝑞) <Q
(𝐹‘𝑞)) → (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) |
32 | 29, 31 | sylancom 417 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) ∧ (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞)) → (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) |
33 | 32 | ex 114 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑞 ∈ Q) → ((𝑟 +Q
𝑞)
<Q (𝐹‘𝑞) → (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
34 | 33 | reximdva 2568 |
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → (∃𝑞 ∈ Q (𝑟 +Q
𝑞)
<Q (𝐹‘𝑞) → ∃𝑞 ∈ Q (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
35 | 17, 34 | mpd 13 |
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑞 ∈ Q (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) |
36 | | oveq1 5849 |
. . . . 5
⊢ (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞)) |
37 | 36 | breq1d 3992 |
. . . 4
⊢ (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
38 | 37 | rexbidv 2467 |
. . 3
⊢ (𝑙 = 𝑠 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ ∃𝑞 ∈ Q (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
39 | 38, 14 | elrab2 2885 |
. 2
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) |
40 | 4, 35, 39 | sylanbrc 414 |
1
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) |