Step | Hyp | Ref
| Expression |
1 | | ltrelnq 7306 |
. . . . 5
⊢
<Q ⊆ (Q ×
Q) |
2 | 1 | brel 4656 |
. . . 4
⊢ (𝑠 <Q
𝑟 → (𝑠 ∈ Q ∧
𝑟 ∈
Q)) |
3 | 2 | simpld 111 |
. . 3
⊢ (𝑠 <Q
𝑟 → 𝑠 ∈ Q) |
4 | 3 | 3ad2ant2 1009 |
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ Q) |
5 | | oveq1 5849 |
. . . . . . . 8
⊢ (𝑙 = 𝑟 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
6 | 5 | breq1d 3992 |
. . . . . . 7
⊢ (𝑙 = 𝑟 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
7 | 6 | rexbidv 2467 |
. . . . . 6
⊢ (𝑙 = 𝑟 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
8 | | caucvgpr.lim |
. . . . . . . 8
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
9 | 8 | fveq2i 5489 |
. . . . . . 7
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
10 | | nqex 7304 |
. . . . . . . . 9
⊢
Q ∈ V |
11 | 10 | rabex 4126 |
. . . . . . . 8
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
12 | 10 | rabex 4126 |
. . . . . . . 8
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
13 | 11, 12 | op1st 6114 |
. . . . . . 7
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
14 | 9, 13 | eqtri 2186 |
. . . . . 6
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
15 | 7, 14 | elrab2 2885 |
. . . . 5
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
16 | 15 | simprbi 273 |
. . . 4
⊢ (𝑟 ∈ (1st
‘𝐿) →
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
17 | 16 | 3ad2ant3 1010 |
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
18 | | simpll2 1027 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑠 <Q 𝑟) |
19 | | ltanqg 7341 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
20 | 19 | adantl 275 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
21 | 4 | ad2antrr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑠 ∈ Q) |
22 | 2 | simprd 113 |
. . . . . . . . . 10
⊢ (𝑠 <Q
𝑟 → 𝑟 ∈ Q) |
23 | 22 | 3ad2ant2 1009 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑟 ∈ Q) |
24 | 23 | ad2antrr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑟 ∈ Q) |
25 | | simplr 520 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑗 ∈ N) |
26 | | nnnq 7363 |
. . . . . . . . 9
⊢ (𝑗 ∈ N →
[〈𝑗,
1o〉] ~Q ∈
Q) |
27 | | recclnq 7333 |
. . . . . . . . 9
⊢
([〈𝑗,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) |
28 | 25, 26, 27 | 3syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) |
29 | | addcomnqg 7322 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
30 | 29 | adantl 275 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
31 | 20, 21, 24, 28, 30 | caovord2d 6011 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )))) |
32 | 18, 31 | mpbid 146 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
33 | | ltsonq 7339 |
. . . . . . 7
⊢
<Q Or Q |
34 | 33, 1 | sotri 4999 |
. . . . . 6
⊢ (((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
35 | 32, 34 | sylancom 417 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
36 | 35 | ex 114 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) → ((𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
37 | 36 | reximdva 2568 |
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → (∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
38 | 17, 37 | mpd 13 |
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
39 | | oveq1 5849 |
. . . . 5
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
40 | 39 | breq1d 3992 |
. . . 4
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
41 | 40 | rexbidv 2467 |
. . 3
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
42 | 41, 14 | elrab2 2885 |
. 2
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
43 | 4, 38, 42 | sylanbrc 414 |
1
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) |