ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlol GIF version

Theorem caucvgprlemlol 7611
Description: Lemma for caucvgpr 7623. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemlol ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑗   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹   𝑗,𝐿,𝑟,𝑠   𝑗,𝑙,𝑠   𝜑,𝑗,𝑟,𝑠   𝑢,𝑗,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑗,𝑘,𝑛)   𝐿(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprlemlol
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7306 . . . . 5 <Q ⊆ (Q × Q)
21brel 4656 . . . 4 (𝑠 <Q 𝑟 → (𝑠Q𝑟Q))
32simpld 111 . . 3 (𝑠 <Q 𝑟𝑠Q)
433ad2ant2 1009 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠Q)
5 oveq1 5849 . . . . . . . 8 (𝑙 = 𝑟 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
65breq1d 3992 . . . . . . 7 (𝑙 = 𝑟 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
76rexbidv 2467 . . . . . 6 (𝑙 = 𝑟 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
8 caucvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
98fveq2i 5489 . . . . . . 7 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
10 nqex 7304 . . . . . . . . 9 Q ∈ V
1110rabex 4126 . . . . . . . 8 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
1210rabex 4126 . . . . . . . 8 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
1311, 12op1st 6114 . . . . . . 7 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
149, 13eqtri 2186 . . . . . 6 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
157, 14elrab2 2885 . . . . 5 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
1615simprbi 273 . . . 4 (𝑟 ∈ (1st𝐿) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
17163ad2ant3 1010 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
18 simpll2 1027 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → 𝑠 <Q 𝑟)
19 ltanqg 7341 . . . . . . . . 9 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2019adantl 275 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
214ad2antrr 480 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → 𝑠Q)
222simprd 113 . . . . . . . . . 10 (𝑠 <Q 𝑟𝑟Q)
23223ad2ant2 1009 . . . . . . . . 9 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑟Q)
2423ad2antrr 480 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → 𝑟Q)
25 simplr 520 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → 𝑗N)
26 nnnq 7363 . . . . . . . . 9 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
27 recclnq 7333 . . . . . . . . 9 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2825, 26, 273syl 17 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
29 addcomnqg 7322 . . . . . . . . 9 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 275 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3120, 21, 24, 28, 30caovord2d 6011 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q ))))
3218, 31mpbid 146 . . . . . 6 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
33 ltsonq 7339 . . . . . . 7 <Q Or Q
3433, 1sotri 4999 . . . . . 6 (((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3532, 34sylancom 417 . . . . 5 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3635ex 114 . . . 4 (((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) → ((𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3736reximdva 2568 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → (∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3817, 37mpd 13 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
39 oveq1 5849 . . . . 5 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
4039breq1d 3992 . . . 4 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4140rexbidv 2467 . . 3 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4241, 14elrab2 2885 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
434, 38, 42sylanbrc 414 1 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  wf 5184  cfv 5188  (class class class)co 5842  1st c1st 6106  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  Qcnq 7221   +Q cplq 7223  *Qcrq 7225   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  caucvgprlemrnd  7614
  Copyright terms: Public domain W3C validator