| Step | Hyp | Ref
| Expression |
| 1 | | ltrelnq 7449 |
. . . . 5
⊢
<Q ⊆ (Q ×
Q) |
| 2 | 1 | brel 4716 |
. . . 4
⊢ (𝑠 <Q
𝑟 → (𝑠 ∈ Q ∧
𝑟 ∈
Q)) |
| 3 | 2 | simpld 112 |
. . 3
⊢ (𝑠 <Q
𝑟 → 𝑠 ∈ Q) |
| 4 | 3 | 3ad2ant2 1021 |
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ Q) |
| 5 | | oveq1 5932 |
. . . . . . . 8
⊢ (𝑙 = 𝑟 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 6 | 5 | breq1d 4044 |
. . . . . . 7
⊢ (𝑙 = 𝑟 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 7 | 6 | rexbidv 2498 |
. . . . . 6
⊢ (𝑙 = 𝑟 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 8 | | caucvgpr.lim |
. . . . . . . 8
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 9 | 8 | fveq2i 5564 |
. . . . . . 7
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
| 10 | | nqex 7447 |
. . . . . . . . 9
⊢
Q ∈ V |
| 11 | 10 | rabex 4178 |
. . . . . . . 8
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
| 12 | 10 | rabex 4178 |
. . . . . . . 8
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
| 13 | 11, 12 | op1st 6213 |
. . . . . . 7
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
| 14 | 9, 13 | eqtri 2217 |
. . . . . 6
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
| 15 | 7, 14 | elrab2 2923 |
. . . . 5
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 16 | 15 | simprbi 275 |
. . . 4
⊢ (𝑟 ∈ (1st
‘𝐿) →
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 17 | 16 | 3ad2ant3 1022 |
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 18 | | simpll2 1039 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑠 <Q 𝑟) |
| 19 | | ltanqg 7484 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 20 | 19 | adantl 277 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 21 | 4 | ad2antrr 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑠 ∈ Q) |
| 22 | 2 | simprd 114 |
. . . . . . . . . 10
⊢ (𝑠 <Q
𝑟 → 𝑟 ∈ Q) |
| 23 | 22 | 3ad2ant2 1021 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑟 ∈ Q) |
| 24 | 23 | ad2antrr 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑟 ∈ Q) |
| 25 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑗 ∈ N) |
| 26 | | nnnq 7506 |
. . . . . . . . 9
⊢ (𝑗 ∈ N →
[〈𝑗,
1o〉] ~Q ∈
Q) |
| 27 | | recclnq 7476 |
. . . . . . . . 9
⊢
([〈𝑗,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) |
| 28 | 25, 26, 27 | 3syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) |
| 29 | | addcomnqg 7465 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 30 | 29 | adantl 277 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 31 | 20, 21, 24, 28, 30 | caovord2d 6097 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )))) |
| 32 | 18, 31 | mpbid 147 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 33 | | ltsonq 7482 |
. . . . . . 7
⊢
<Q Or Q |
| 34 | 33, 1 | sotri 5066 |
. . . . . 6
⊢ (((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 35 | 32, 34 | sylancom 420 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 36 | 35 | ex 115 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) → ((𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 37 | 36 | reximdva 2599 |
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → (∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 38 | 17, 37 | mpd 13 |
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 39 | | oveq1 5932 |
. . . . 5
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 40 | 39 | breq1d 4044 |
. . . 4
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 41 | 40 | rexbidv 2498 |
. . 3
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 42 | 41, 14 | elrab2 2923 |
. 2
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 43 | 4, 38, 42 | sylanbrc 417 |
1
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) |