| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltrelnq 7432 | 
. . . . 5
⊢ 
<Q ⊆ (Q ×
Q) | 
| 2 | 1 | brel 4715 | 
. . . 4
⊢ (𝑠 <Q
𝑟 → (𝑠 ∈ Q ∧
𝑟 ∈
Q)) | 
| 3 | 2 | simpld 112 | 
. . 3
⊢ (𝑠 <Q
𝑟 → 𝑠 ∈ Q) | 
| 4 | 3 | 3ad2ant2 1021 | 
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ Q) | 
| 5 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑙 = 𝑟 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 6 | 5 | breq1d 4043 | 
. . . . . . 7
⊢ (𝑙 = 𝑟 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 7 | 6 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑙 = 𝑟 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 8 |   | caucvgpr.lim | 
. . . . . . . 8
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 9 | 8 | fveq2i 5561 | 
. . . . . . 7
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 10 |   | nqex 7430 | 
. . . . . . . . 9
⊢
Q ∈ V | 
| 11 | 10 | rabex 4177 | 
. . . . . . . 8
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V | 
| 12 | 10 | rabex 4177 | 
. . . . . . . 8
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V | 
| 13 | 11, 12 | op1st 6204 | 
. . . . . . 7
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 14 | 9, 13 | eqtri 2217 | 
. . . . . 6
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 15 | 7, 14 | elrab2 2923 | 
. . . . 5
⊢ (𝑟 ∈ (1st
‘𝐿) ↔ (𝑟 ∈ Q ∧
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 16 | 15 | simprbi 275 | 
. . . 4
⊢ (𝑟 ∈ (1st
‘𝐿) →
∃𝑗 ∈
N (𝑟
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 17 | 16 | 3ad2ant3 1022 | 
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 18 |   | simpll2 1039 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑠 <Q 𝑟) | 
| 19 |   | ltanqg 7467 | 
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 20 | 19 | adantl 277 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) | 
| 21 | 4 | ad2antrr 488 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑠 ∈ Q) | 
| 22 | 2 | simprd 114 | 
. . . . . . . . . 10
⊢ (𝑠 <Q
𝑟 → 𝑟 ∈ Q) | 
| 23 | 22 | 3ad2ant2 1021 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑟 ∈ Q) | 
| 24 | 23 | ad2antrr 488 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑟 ∈ Q) | 
| 25 |   | simplr 528 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → 𝑗 ∈ N) | 
| 26 |   | nnnq 7489 | 
. . . . . . . . 9
⊢ (𝑗 ∈ N →
[〈𝑗,
1o〉] ~Q ∈
Q) | 
| 27 |   | recclnq 7459 | 
. . . . . . . . 9
⊢
([〈𝑗,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) | 
| 28 | 25, 26, 27 | 3syl 17 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) | 
| 29 |   | addcomnqg 7448 | 
. . . . . . . . 9
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 30 | 29 | adantl 277 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 <Q
𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 31 | 20, 21, 24, 28, 30 | caovord2d 6093 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )))) | 
| 32 | 18, 31 | mpbid 147 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 33 |   | ltsonq 7465 | 
. . . . . . 7
⊢ 
<Q Or Q | 
| 34 | 33, 1 | sotri 5065 | 
. . . . . 6
⊢ (((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 35 | 32, 34 | sylancom 420 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) ∧ (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 36 | 35 | ex 115 | 
. . . 4
⊢ (((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) ∧ 𝑗 ∈ N) → ((𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 37 | 36 | reximdva 2599 | 
. . 3
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → (∃𝑗 ∈ N (𝑟 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 38 | 17, 37 | mpd 13 | 
. 2
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 39 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 40 | 39 | breq1d 4043 | 
. . . 4
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 41 | 40 | rexbidv 2498 | 
. . 3
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 42 | 41, 14 | elrab2 2923 | 
. 2
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 43 | 4, 38, 42 | sylanbrc 417 | 
1
⊢ ((𝜑 ∧ 𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) |