ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre GIF version

Theorem qbtwnre 10192
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 988 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simp1 987 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
31, 2resubcld 8279 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
4 simp3 989 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
52, 1posdifd 8430 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
64, 5mpbid 146 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
7 nnrecl 9112 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
83, 6, 7syl2anc 409 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
92adantr 274 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝐴 ∈ ℝ)
10 2re 8927 . . . . . . 7 2 ∈ ℝ
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 2 ∈ ℝ)
12 simprl 521 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℕ)
1312nnred 8870 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℝ)
1411, 13remulcld 7929 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (2 · 𝑛) ∈ ℝ)
159, 14remulcld 7929 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (𝐴 · (2 · 𝑛)) ∈ ℝ)
16 rebtwn2z 10190 . . . 4 ((𝐴 · (2 · 𝑛)) ∈ ℝ → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
1715, 16syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
18 simprl 521 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 ∈ ℤ)
19 2z 9219 . . . . . . 7 2 ∈ ℤ
2019a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℤ)
2118, 20zaddcld 9317 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℤ)
22 2nn 9018 . . . . . . 7 2 ∈ ℕ
2322a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℕ)
2412adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑛 ∈ ℕ)
2523, 24nnmulcld 8906 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℕ)
26 znq 9562 . . . . 5 (((𝑚 + 2) ∈ ℤ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
2721, 25, 26syl2anc 409 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
28 simprrr 530 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝐴 · (2 · 𝑛)) < (𝑚 + 2))
299adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 ∈ ℝ)
3021zred 9313 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℝ)
3125nnrpd 9630 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℝ+)
3229, 30, 31ltmuldivd 9680 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝐴 · (2 · 𝑛)) < (𝑚 + 2) ↔ 𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
3328, 32mpbid 146 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 < ((𝑚 + 2) / (2 · 𝑛)))
34 simpll2 1027 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐵 ∈ ℝ)
35 simprrl 529 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 < (𝐴 · (2 · 𝑛)))
36 simplrr 526 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (1 / 𝑛) < (𝐵𝐴))
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 10191 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)
38 breq2 3986 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝐴 < 𝑥𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
39 breq1 3985 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝑥 < 𝐵 ↔ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵))
4038, 39anbi12d 465 . . . . 5 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)))
4140rspcev 2830 . . . 4 ((((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ ∧ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4227, 33, 37, 41syl12anc 1226 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4317, 42rexlimddv 2588 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
448, 43rexlimddv 2588 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cmin 8069   / cdiv 8568  cn 8857  2c2 8908  cz 9191  cq 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590
This theorem is referenced by:  qbtwnxr  10193  qdenre  11144  expcnvre  11444
  Copyright terms: Public domain W3C validator