ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre GIF version

Theorem qbtwnre 10328
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simp1 999 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
31, 2resubcld 8402 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
4 simp3 1001 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
52, 1posdifd 8553 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
64, 5mpbid 147 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
7 nnrecl 9241 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
83, 6, 7syl2anc 411 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
92adantr 276 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝐴 ∈ ℝ)
10 2re 9054 . . . . . . 7 2 ∈ ℝ
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 2 ∈ ℝ)
12 simprl 529 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℕ)
1312nnred 8997 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℝ)
1411, 13remulcld 8052 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (2 · 𝑛) ∈ ℝ)
159, 14remulcld 8052 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (𝐴 · (2 · 𝑛)) ∈ ℝ)
16 rebtwn2z 10326 . . . 4 ((𝐴 · (2 · 𝑛)) ∈ ℝ → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
1715, 16syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
18 simprl 529 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 ∈ ℤ)
19 2z 9348 . . . . . . 7 2 ∈ ℤ
2019a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℤ)
2118, 20zaddcld 9446 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℤ)
22 2nn 9146 . . . . . . 7 2 ∈ ℕ
2322a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℕ)
2412adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑛 ∈ ℕ)
2523, 24nnmulcld 9033 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℕ)
26 znq 9692 . . . . 5 (((𝑚 + 2) ∈ ℤ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
2721, 25, 26syl2anc 411 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
28 simprrr 540 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝐴 · (2 · 𝑛)) < (𝑚 + 2))
299adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 ∈ ℝ)
3021zred 9442 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℝ)
3125nnrpd 9763 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℝ+)
3229, 30, 31ltmuldivd 9813 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝐴 · (2 · 𝑛)) < (𝑚 + 2) ↔ 𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
3328, 32mpbid 147 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 < ((𝑚 + 2) / (2 · 𝑛)))
34 simpll2 1039 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐵 ∈ ℝ)
35 simprrl 539 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 < (𝐴 · (2 · 𝑛)))
36 simplrr 536 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (1 / 𝑛) < (𝐵𝐴))
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 10327 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)
38 breq2 4034 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝐴 < 𝑥𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
39 breq1 4033 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝑥 < 𝐵 ↔ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵))
4038, 39anbi12d 473 . . . . 5 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)))
4140rspcev 2865 . . . 4 ((((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ ∧ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4227, 33, 37, 41syl12anc 1247 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4317, 42rexlimddv 2616 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
448, 43rexlimddv 2616 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  (class class class)co 5919  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cmin 8192   / cdiv 8693  cn 8984  2c2 9035  cz 9320  cq 9687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723
This theorem is referenced by:  qbtwnxr  10329  qdenre  11349  expcnvre  11649
  Copyright terms: Public domain W3C validator