ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre GIF version

Theorem qbtwnre 10346
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simp1 999 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
31, 2resubcld 8407 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
4 simp3 1001 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
52, 1posdifd 8559 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
64, 5mpbid 147 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
7 nnrecl 9247 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
83, 6, 7syl2anc 411 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
92adantr 276 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝐴 ∈ ℝ)
10 2re 9060 . . . . . . 7 2 ∈ ℝ
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 2 ∈ ℝ)
12 simprl 529 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℕ)
1312nnred 9003 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℝ)
1411, 13remulcld 8057 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (2 · 𝑛) ∈ ℝ)
159, 14remulcld 8057 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (𝐴 · (2 · 𝑛)) ∈ ℝ)
16 rebtwn2z 10344 . . . 4 ((𝐴 · (2 · 𝑛)) ∈ ℝ → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
1715, 16syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
18 simprl 529 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 ∈ ℤ)
19 2z 9354 . . . . . . 7 2 ∈ ℤ
2019a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℤ)
2118, 20zaddcld 9452 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℤ)
22 2nn 9152 . . . . . . 7 2 ∈ ℕ
2322a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℕ)
2412adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑛 ∈ ℕ)
2523, 24nnmulcld 9039 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℕ)
26 znq 9698 . . . . 5 (((𝑚 + 2) ∈ ℤ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
2721, 25, 26syl2anc 411 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
28 simprrr 540 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝐴 · (2 · 𝑛)) < (𝑚 + 2))
299adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 ∈ ℝ)
3021zred 9448 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℝ)
3125nnrpd 9769 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℝ+)
3229, 30, 31ltmuldivd 9819 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝐴 · (2 · 𝑛)) < (𝑚 + 2) ↔ 𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
3328, 32mpbid 147 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 < ((𝑚 + 2) / (2 · 𝑛)))
34 simpll2 1039 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐵 ∈ ℝ)
35 simprrl 539 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 < (𝐴 · (2 · 𝑛)))
36 simplrr 536 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (1 / 𝑛) < (𝐵𝐴))
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 10345 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)
38 breq2 4037 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝐴 < 𝑥𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
39 breq1 4036 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝑥 < 𝐵 ↔ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵))
4038, 39anbi12d 473 . . . . 5 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)))
4140rspcev 2868 . . . 4 ((((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ ∧ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4227, 33, 37, 41syl12anc 1247 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4317, 42rexlimddv 2619 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
448, 43rexlimddv 2619 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  cz 9326  cq 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729
This theorem is referenced by:  qbtwnxr  10347  qdenre  11367  expcnvre  11668
  Copyright terms: Public domain W3C validator