ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri GIF version

Theorem sotri 4999
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem sotri
StepHypRef Expression
1 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 4656 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
32simpld 111 . . 3 (𝐴𝑅𝐵𝐴𝑆)
41brel 4656 . . 3 (𝐵𝑅𝐶 → (𝐵𝑆𝐶𝑆))
53, 4anim12i 336 . 2 ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
6 soi.1 . . . 4 𝑅 Or 𝑆
7 sotr 4296 . . . 4 ((𝑅 Or 𝑆 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
86, 7mpan 421 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
983expb 1194 . 2 ((𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
105, 9mpcom 36 1 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  wss 3116   class class class wbr 3982   Or wor 4273   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-po 4274  df-iso 4275  df-xp 4610
This theorem is referenced by:  son2lpi  5000  ltsonq  7339  lt2addnq  7345  lt2mulnq  7346  ltbtwnnqq  7356  prarloclemarch2  7360  genplt2i  7451  addlocprlemgt  7475  nqprloc  7486  prmuloclemcalc  7506  ltsopr  7537  ltexprlemopl  7542  ltexprlemopu  7544  ltexprlemru  7553  prplnqu  7561  recexprlemlol  7567  recexprlemupu  7569  recexprlemdisj  7571  recexprlemss1l  7576  recexprlemss1u  7577  cauappcvgprlemopl  7587  cauappcvgprlemlol  7588  cauappcvgprlemupu  7590  cauappcvgprlemladdfu  7595  caucvgprlemk  7606  caucvgprlemnkj  7607  caucvgprlemnbj  7608  caucvgprlemm  7609  caucvgprlemopl  7610  caucvgprlemlol  7611  caucvgprlemupu  7613  caucvgprlemloc  7616  caucvgprlemladdfu  7618  caucvgprprlemk  7624  caucvgprprlemloccalc  7625  caucvgprprlemnkltj  7630  caucvgprprlemnkeqj  7631  caucvgprprlemnjltk  7632  caucvgprprlemnbj  7634  caucvgprprlemml  7635  caucvgprprlemopl  7638  caucvgprprlemlol  7639  caucvgprprlemupu  7641  lttrsr  7703  addgt0sr  7716  archsr  7723  caucvgsrlemcl  7730  caucvgsrlemfv  7732  suplocsrlemb  7747  suplocsrlempr  7748  suplocsrlem  7749  axpre-lttrn  7825
  Copyright terms: Public domain W3C validator