ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri GIF version

Theorem sotri 5062
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem sotri
StepHypRef Expression
1 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 4712 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
32simpld 112 . . 3 (𝐴𝑅𝐵𝐴𝑆)
41brel 4712 . . 3 (𝐵𝑅𝐶 → (𝐵𝑆𝐶𝑆))
53, 4anim12i 338 . 2 ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
6 soi.1 . . . 4 𝑅 Or 𝑆
7 sotr 4350 . . . 4 ((𝑅 Or 𝑆 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
86, 7mpan 424 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
983expb 1206 . 2 ((𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
105, 9mpcom 36 1 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2164  wss 3154   class class class wbr 4030   Or wor 4327   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-po 4328  df-iso 4329  df-xp 4666
This theorem is referenced by:  son2lpi  5063  ltsonq  7460  lt2addnq  7466  lt2mulnq  7467  ltbtwnnqq  7477  prarloclemarch2  7481  genplt2i  7572  addlocprlemgt  7596  nqprloc  7607  prmuloclemcalc  7627  ltsopr  7658  ltexprlemopl  7663  ltexprlemopu  7665  ltexprlemru  7674  prplnqu  7682  recexprlemlol  7688  recexprlemupu  7690  recexprlemdisj  7692  recexprlemss1l  7697  recexprlemss1u  7698  cauappcvgprlemopl  7708  cauappcvgprlemlol  7709  cauappcvgprlemupu  7711  cauappcvgprlemladdfu  7716  caucvgprlemk  7727  caucvgprlemnkj  7728  caucvgprlemnbj  7729  caucvgprlemm  7730  caucvgprlemopl  7731  caucvgprlemlol  7732  caucvgprlemupu  7734  caucvgprlemloc  7737  caucvgprlemladdfu  7739  caucvgprprlemk  7745  caucvgprprlemloccalc  7746  caucvgprprlemnkltj  7751  caucvgprprlemnkeqj  7752  caucvgprprlemnjltk  7753  caucvgprprlemnbj  7755  caucvgprprlemml  7756  caucvgprprlemopl  7759  caucvgprprlemlol  7760  caucvgprprlemupu  7762  lttrsr  7824  addgt0sr  7837  archsr  7844  caucvgsrlemcl  7851  caucvgsrlemfv  7853  suplocsrlemb  7868  suplocsrlempr  7869  suplocsrlem  7870  axpre-lttrn  7946
  Copyright terms: Public domain W3C validator