ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucelon GIF version

Theorem sucelon 4348
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
sucelon (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem sucelon
StepHypRef Expression
1 suceloni 4346 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eloni 4226 . . 3 (suc 𝐴 ∈ On → Ord suc 𝐴)
3 elex 2644 . . . . 5 (suc 𝐴 ∈ On → suc 𝐴 ∈ V)
4 sucexb 4342 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
53, 4sylibr 133 . . . 4 (suc 𝐴 ∈ On → 𝐴 ∈ V)
6 elong 4224 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
7 ordsucg 4347 . . . . 5 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
86, 7bitrd 187 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴))
95, 8syl 14 . . 3 (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴))
102, 9mpbird 166 . 2 (suc 𝐴 ∈ On → 𝐴 ∈ On)
111, 10impbii 125 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1445  Vcvv 2633  Ord word 4213  Oncon0 4214  suc csuc 4216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-uni 3676  df-tr 3959  df-iord 4217  df-on 4219  df-suc 4222
This theorem is referenced by:  onsucmin  4352  onsucuni2  4408
  Copyright terms: Public domain W3C validator