ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucelon GIF version

Theorem sucelon 4487
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
sucelon (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem sucelon
StepHypRef Expression
1 suceloni 4485 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eloni 4360 . . 3 (suc 𝐴 ∈ On → Ord suc 𝐴)
3 elex 2741 . . . . 5 (suc 𝐴 ∈ On → suc 𝐴 ∈ V)
4 sucexb 4481 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
53, 4sylibr 133 . . . 4 (suc 𝐴 ∈ On → 𝐴 ∈ V)
6 elong 4358 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
7 ordsucg 4486 . . . . 5 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
86, 7bitrd 187 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴))
95, 8syl 14 . . 3 (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴))
102, 9mpbird 166 . 2 (suc 𝐴 ∈ On → 𝐴 ∈ On)
111, 10impbii 125 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2141  Vcvv 2730  Ord word 4347  Oncon0 4348  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by:  onsucmin  4491  onsucuni2  4548
  Copyright terms: Public domain W3C validator