Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucelon | GIF version |
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
sucelon | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceloni 4478 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | eloni 4353 | . . 3 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
3 | elex 2737 | . . . . 5 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ V) | |
4 | sucexb 4474 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 133 | . . . 4 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ V) |
6 | elong 4351 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
7 | ordsucg 4479 | . . . . 5 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
8 | 6, 7 | bitrd 187 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
9 | 5, 8 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
10 | 2, 9 | mpbird 166 | . 2 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ On) |
11 | 1, 10 | impbii 125 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 Vcvv 2726 Ord word 4340 Oncon0 4341 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: onsucmin 4484 onsucuni2 4541 |
Copyright terms: Public domain | W3C validator |