Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucelon | GIF version |
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
sucelon | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceloni 4494 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | eloni 4369 | . . 3 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
3 | elex 2746 | . . . . 5 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ V) | |
4 | sucexb 4490 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 134 | . . . 4 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ V) |
6 | elong 4367 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
7 | ordsucg 4495 | . . . . 5 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
8 | 6, 7 | bitrd 188 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
9 | 5, 8 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
10 | 2, 9 | mpbird 167 | . 2 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ On) |
11 | 1, 10 | impbii 126 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2146 Vcvv 2735 Ord word 4356 Oncon0 4357 suc csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 |
This theorem is referenced by: onsucmin 4500 onsucuni2 4557 |
Copyright terms: Public domain | W3C validator |