ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucelon GIF version

Theorem sucelon 4496
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
sucelon (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem sucelon
StepHypRef Expression
1 suceloni 4494 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eloni 4369 . . 3 (suc 𝐴 ∈ On → Ord suc 𝐴)
3 elex 2746 . . . . 5 (suc 𝐴 ∈ On → suc 𝐴 ∈ V)
4 sucexb 4490 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
53, 4sylibr 134 . . . 4 (suc 𝐴 ∈ On → 𝐴 ∈ V)
6 elong 4367 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
7 ordsucg 4495 . . . . 5 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
86, 7bitrd 188 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴))
95, 8syl 14 . . 3 (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴))
102, 9mpbird 167 . 2 (suc 𝐴 ∈ On → 𝐴 ∈ On)
111, 10impbii 126 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2146  Vcvv 2735  Ord word 4356  Oncon0 4357  suc csuc 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-tr 4097  df-iord 4360  df-on 4362  df-suc 4365
This theorem is referenced by:  onsucmin  4500  onsucuni2  4557
  Copyright terms: Public domain W3C validator