![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucelon | GIF version |
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
sucelon | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceloni 4346 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | eloni 4226 | . . 3 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
3 | elex 2644 | . . . . 5 ⊢ (suc 𝐴 ∈ On → suc 𝐴 ∈ V) | |
4 | sucexb 4342 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
5 | 3, 4 | sylibr 133 | . . . 4 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ V) |
6 | elong 4224 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
7 | ordsucg 4347 | . . . . 5 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
8 | 6, 7 | bitrd 187 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
9 | 5, 8 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴)) |
10 | 2, 9 | mpbird 166 | . 2 ⊢ (suc 𝐴 ∈ On → 𝐴 ∈ On) |
11 | 1, 10 | impbii 125 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1445 Vcvv 2633 Ord word 4213 Oncon0 4214 suc csuc 4216 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-uni 3676 df-tr 3959 df-iord 4217 df-on 4219 df-suc 4222 |
This theorem is referenced by: onsucmin 4352 onsucuni2 4408 |
Copyright terms: Public domain | W3C validator |