ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucelon GIF version

Theorem sucelon 4480
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
sucelon (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem sucelon
StepHypRef Expression
1 suceloni 4478 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eloni 4353 . . 3 (suc 𝐴 ∈ On → Ord suc 𝐴)
3 elex 2737 . . . . 5 (suc 𝐴 ∈ On → suc 𝐴 ∈ V)
4 sucexb 4474 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
53, 4sylibr 133 . . . 4 (suc 𝐴 ∈ On → 𝐴 ∈ V)
6 elong 4351 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
7 ordsucg 4479 . . . . 5 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
86, 7bitrd 187 . . . 4 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord suc 𝐴))
95, 8syl 14 . . 3 (suc 𝐴 ∈ On → (𝐴 ∈ On ↔ Ord suc 𝐴))
102, 9mpbird 166 . 2 (suc 𝐴 ∈ On → 𝐴 ∈ On)
111, 10impbii 125 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2136  Vcvv 2726  Ord word 4340  Oncon0 4341  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349
This theorem is referenced by:  onsucmin  4484  onsucuni2  4541
  Copyright terms: Public domain W3C validator